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Abstract—Signalling cascades are a recurrent pattern of biological
regulatory systems whose analysis has deserved a lot of attention.
It has been shown that stochastic Petri nets are appropriate to
model such systems and evaluate the probabilities of specific
properties. Such an evaluation can be done numerically when the
combinatorial state space explosion is manageable or statistically
otherwise. However, when the probabilities to be evaluated are too
small, random simulation requires more sophisticated techniques
for the handling of rare events. Here we show how such involved
methods can be successfully applied for signalling cascades. More
precisely, we study three relevant properties of a signalling
cascade with the help of the COSMOS tool. Our experiments point
out interesting dependencies between quantitative parameters of
the regulatory system and its transient behaviour. In addition,
they demonstrate that we can go beyond the capabilities of
MARCIE, which provides one of the most efficient numerical
solvers.

Keywords–Anything; Something; Everything else.

I. INTRODUCTION

Signalling cascades. Signalling processes play a crucial
role for the regulatory behaviour of living cells. They mediate
input signals, i.e. the extracellular stimuli received at the cell
membrane, to the cell nucleus, where they enter as output
signals the gene regulatory system. Understanding signalling
processes is still a challenge in cell biology. To approach this
research area, biologists design and explore signalling net-
works, which are likely to be building blocks of the signalling
networks of living cells. Among them are the type of signalling
cascades which we investigate in our paper.

A signalling cascade is a set of reactions which can be
grouped into levels. At each level a particular enzyme is
produced (e.g. by phosphorylation); the level generally also
includes the inverse reactions (e.g., dephosphorylation). The
system constitutes a cascade since the enzyme produced at
some level is the catalyser for the reactions at the next level.
The catalyser of the first level is usually considered to be
the input signal, while the catalyser produced by the last
level constitutes the output signal. The transient behaviour of
such a system presents a characteristic shape, the quantity of

every enzyme increases to some stationary value. In addition,
the increases are temporally ordered w.r.t. the levels in the
signalling cascade. This behaviour can be viewed as a signal
travelling along the levels, and there are many interesting
properties to be studied like the travelling time of the signal,
the relation between the variation of the enzymes of two
consecutive levels, etc.

In [1], it has been shown how such a system can be
modelled by a Petri net which can either be equipped with
continuous transition firing rates leading to a continuous Petri
net which determines a set of differential equations or by
stochastic transition firing rates leading to a stochastic Petri
net. This approach emphasises the importance of Petri nets
which, depending on the chosen semantics, permit to investi-
gate particular properties of the system. In this paper we wish
to explore the influence of stochastic features on the signalling
behaviour, and thus we focus on the use of stochastic Petri nets.

Analysis of stochastic Petri nets can be performed either
numerically or statistically. The former approach is much faster
than the latter and provides exact results up to numerical
approximations, but its application is limited by the memory
requirements due to the combinatory explosion of the state
space.

Statistical evaluation of rare events. Statistical analysis
means to estimate the results by evaluating a sufficient number
of simulations. However, standard simulation is unable to
efficiently handle rare events, i.e. properties whose probability
of satisfaction is tiny. Indeed the number of trajectories to
be generated in order to get an accurate interval confidence
for rare events becomes prohibitively huge. Thus acceleration
techniques [2] have been designed to tackle this problem
whose principles consist in (1) favouring trajectories that
satisfy the property, and (2) numerically adjusting the result
to take into account the bias that has been introduced. This
can be done by splitting the most promising trajectories [3]
or importance sampling [4], i.e. modifying the distribution
during the simulation. In previous work [5], some of us have
developed an original importance sampling method based on
the design and numerical analysis of a reduced model in order



to get the importance coefficients. First proposed for checking
“unbounded until” properties over models whose semantics is
a discrete time Markov chain, it has been extended to also
handle “bounded until” properties and continuous time Markov
chains [6].

Our contribution. In this paper we consider three families of
properties for signalling cascades that are particularly relevant
for the study of their behaviour and that are (depending on a
scaling parameter) potentially rare events. From an algorithmic
point of view, this case study raises interesting issues since the
combinatorial explosion of the model quickly forbids the use
of numerical solvers and its intricate (quantitative) behaviour
requires elaborated and different abstractions depending on the
property to be checked.

Due to these technical difficulties, the signalling cascade
analysis has led us to substantially improve our method and
in particular the way we obtain the final confidence interval.
From a biological point of view, experiments have pointed out
interesting dependencies between the scaling parameter of the
model and the probability of satisfying a property.

Organisation. In Section II we present the biological back-
ground, the signalling cascade under study and the properties
to be studied. Then in Section III after some recalls on
stochastic Petri nets, we model signalling cascades by SPNs.
We introduce the rare event issue and the importance sampling
technique to cope with in Section IV. In Section V, we develop
our method for handling rare events. Then in Section VI we
report and discuss the results of our experiments. Finally in
Section VII, we conclude and give some perspectives to our
work. Additional details about technical considerations are
provided in the appendix.

II. SIGNALLING CASCADES

In technical terms, signalling cascades can be understood as
networks of biochemical reactions transforming input signals
into output signals. In this way, signalling processes determine
crucial decisions a cell has to make during its development,
such as cell division, differentiation, or death. Malfunction
of these networks may potentially lead to devastating con-
sequences on the organism, such as outbreak of diseases or
immunological abnormalities. Therefore, cell biology tries to
increase our understanding of how signalling cascades are
structured and how they operate. However, signalling networks
are generally hard to observe and often highly interconnected,
and thus signalling processes are not easy to follow. For this
reason, typical building blocks are designed instead, which are
able to reproduce observed input/output behaviours.

The case study we have chosen for our paper is such a
signalling building block: the mitogen-activated protein kinase
(MAPK) cascade [7]. This is the core of the ubiquitous
ERK/MAPK network that can, among others, convey cell
division and differentiation signals from the cell membrane
to the nucleus. The description starts at the RasGTP complex
which acts as an enzyme (kinase) to phosphorylate Raf, which
phosphorylates MAPK/ERK Kinase (MEK), which in turn
phosphorylates Extracellular signal Regulated Kinase (ERK).
We consider RasGTP as the input signal and ERKPP (ac-
tivated ERK) as the output signal. This cascade (RasGTP

→ Raf → MEK → ERK) of protein interactions is known
to control cell differentiation, while the strength of the effect
depends on the ERK activity, i.e. concentration of ERKPP.

The scheme in Figure 1 describes the typical modular
structure for such a signalling cascade, see [8]. Each layer
corresponds to a distinct protein species. The protein Raf in
the first layer is only singly phosphorylated. The proteins in
the two other layers, MEK and ERK respectively, can be
singly as well as doubly phosphorylated. In each layer, for-
ward reactions are catalysed by kinases and reverse reactions
by phosphatases (Phosphatase1, Phosphatase2, Phosphatase3).
The kinases in the MEK and ERK layers are the phospho-
rylated forms of the proteins in the previous layer. Each
phosphorylation/dephosphorylation step applies mass action
kinetics according to the pattern A + E 
 AE → B + E.
This pattern reflects the mechanism by which enzymes act:
first building a complex with the substrate, which modifies
the substrate to allow for forming the product, and then
disassociating the complex to release the product; for details
see [9].

Having the wiring diagram of the signalling cascade, a
couple of interesting questions arise whose answers would
shed some additional light on the subject under investigation.
Among them are an assessment of the signal strength in each
level, and specifically of the output signal. We will consider
these properties in Sections VI-A and VI-B. The general
scheme of the signalling cascade also suggests a temporal order
of the signal propagation in accordance with the level order.
What cannot be derived from the structure is the extent to
which the signals are simultaneously produced; we will discuss
this property in Section VIII-D.

III. PETRI NET MODELLING

a) Stochastic Petri nets.: Due to their graphical repre-
sentation and bipartite nature, Petri nets are highly appropri-
ate to model biochemical networks. When equipped with a
stochastic semantics, yielding stochastic Petri nets (SPN) [10],
they can be used to perform quantitative analysis.

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

Figure 1. The general scheme of the considered three-level signalling cascade;
RasGTP serves as input signal and ERKPP as output signal.



Definition 1 (SPN). A stochastic Petri net N is defined by:

• a finite set of places P ;

• a finite set of transitions T ;

• a backward (resp. forward) incidence matrix Pre
(resp. Post) from P × T to N.

• a set of state-dependent rates of transitions {µt}t∈T
such that µt is a mapping from NP to R>0.

A marking m of an SPN N is an item of NP . A transition t
is fireable in marking m if for all p ∈ P m(p) ≥ Pre(p, t). Its
firing leads to marking m′ defined by: for all p ∈ P m′(p) =

m(p)−Pre(p, t)+Post(p, t). It is denoted either as m t−→ m′

or as m t−→ omitting the next marking. Let σ = σ1 . . . σn ∈
T ∗, then σ is fireable from m and leads to m′ if there exists
a sequence of markings m = m0,m1, . . . ,mn such that for
all 0 ≤ k < n, mk

σk−→ mk+1. This firing is also denoted
m

σ−→ m′. Let m0 be an initial marking, the reachability set
Reach(N ,m0) is defined by: Reach(N ,m0) = {m | ∃σ ∈
T ∗ m0

σ−→ m}. The initialised SPNs (N ,m0) that we consider
do not have deadlocks: for all m ∈ Reach(N ,m0) there exists
t ∈ T such that m t−→.

An SPN is a high-level model whose operational semantics
is a continuous time Markov chain (CTMC). In a marking m,
each enabled transition of the Petri net randomly selects an
execution time according to a Poisson process with rate µt.
Then the transition with earliest firing time is selected to fire
yielding the new marking. This can be formalized as follows.

Definition 2 (CTMC of a SPN). Let N be a stochastic Petri
net and m0 be an initial marking. Then the CTMC associated
with (N ,m0) is defined by:

• the set of states is Reach(N ,m0);

• the transition matrix P is defined by:

P(m,m′) =

∑
m

t−→m′
µt(m)∑

m
t−→ µt(m)

• the rate λm is defined by: λm =
∑
m

t−→ µt(m)

b) Running case study.: We now explain how to
model our running case study in the Petri net framework.
The signalling cascade is made of several phosphoryla-
tion/dephosphorylation steps, which are built on mass/action
kinetics. Each step follows the pattern A+E 
 AE → B+E
and is modelled by a small Petri net component depicted
in Figure 2. The mass action kinetics is expressed by the
rate of the transitions. The marking-dependent rate of each
transition is equal to the product of the number of tokens in
all its incoming places up to a multiplicative constant given
by the biological behaviour (summing up dependencies on
temperature, pressure, volume, etc.).

The whole reaction network based on the general scheme
of a three-level double phosphorylation cascade, as given in
Figure 1, is modelled by the Petri net in Figure 3. The input
signal is the number of tokens in the place RasGTP, and the
output signal is the number of tokens in the place ERKPP.

This signalling cascade model represents a self-contained
and closed system. It is covered with place invariants (see the
appendix), specifically each layer in the cascade forms a P-
invariant consisting of all states a protein can undergo; thus the
model is bounded. Assuming an appropriate initial marking,
the model is also live and reversible; see [1] for more details,
where this Petri net has been developed and analysed in the
qualitative, stochastic and continuous modelling paradigms. In
our paper we extend these analysis techniques for handling
properties corresponding to rare events.

We introduce a scaling factor N to parameterize how many
tokens are spent to specify the initial marking. Increasing the
scaling parameter can be interpreted in two different ways:
either an increase of the biomass circulating in the closed
system (if the biomass value of one token is kept constant), or
an increase of the resolution (if the biomass value of one token
inversely decreases, called level concept in [1]). The kind of
interpretation does not influence the approach we pursue in
this paper.

E

BAEA r3
r2

r1

Figure 2. Petri net pattern for mass action kinetics A+E 
 AE → B+E.
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Figure 3. A Petri net modelling the three-level signalling cascade given in
Figure 1; ki are the kinetic constants for mass action kinetics, N the scaling
parameter.

Increasing N means to increase the size of the state space
and thus of the CTMC, as shown in Table I which has been
computed with the symbolic analysis tool MARCIE [11]. As
expected, the explosion of the state space prevents numerical



Table I. DEVELOPMENT OF THE STATE SPACE FOR INCREASING N .

N number of states N number of states
1 24,065 (4) 6 769,371,342,640 (11)
2 6,110,643 (6) 7 5,084,605,436,988 (12)
3 315,647,600 (8) 8 27,124,071,792,125 (13)
4 6,920,337,880 (9) 9 122,063,174,018,865 (14)
5 88,125,763,956 (10) 10 478,293,389,221,095 (14)

model checking for higher N and thus calls for statistical
model checking.

Furthermore, increasing the number of states means to
actually decrease the probabilities to be in a certain state,
as the total probability of 1 is fixed. With the distribution of
the probability mass of 1 over an increasingly huge number
of states, we obtain sooner or later states with very tiny
probabilities, and thus rare events. Neglecting rare events is
usually appropriate when focusing on the averaged behaviour.
But they become crucial when certain jump processes such as
mutations under rarely occurring conditions are of interest.

IV. STATISTICAL MODEL CHECKING WITH RARE EVENTS

A. Statistical model checking and rare events

c) Simulation recalls.: The statistical approach for eval-
uating the expectation E(X) of a random variable X related to
a random path in a Markov chain is generally based on three
parameters: the number of simulations K, the confidence level
γ, and the width of the confidence interval lg (see [12]). Once
the user provides two parameters, the procedure computes
the remaining one. Then it performs K simulations of the
Markov chain and outputs a confidence interval [L,U ] with
a width of at most lg such that E(X) belongs to this interval
with a probability of at least γ. More precisely, depending on
the hypotheses, the confidence level has two interpretations:
(1) either the confidence level is truly ensured, or (2) the
required probability is only asymptotically valid (when K
goes to infinity using central limit theorem). The two usual
hypotheses for providing a true confidence level are either that
the distribution of X is known up to a parameter (e.g. Bernoulli
law with unknown success probability) or that the random
variable is bounded allowing to exploit Chernoff-Hoeffding
bounds [13].

d) Statistical evaluation of a reachability probability.:
Let C be a discrete time Markov chain (DTMC) with two
absorbing states s+ or s−, such that the probability to reach
s+ or s− from any state is equal to 1. Assume one wants to
estimate p, the probability to reach s+. Then the simulation
step consists in generating K paths of C which end in an
absorbing state. Let K+ be the number of paths ending in state
s+. The random variable K+ follows a binomial distribution
with parameters p and K. Thus the random variable K+

K has
a mean value p and since the distribution is parametrised by
p, a true confidence level can be ensured. Unfortunately, when
p � 1, the number of paths required for a small confidence
interval is too large to be simulated. This issue is known as
the rare event problem.

e) Importance sampling.: In order to tackle the rare
event problem, the importance sampling method relies on a
choice of a biased distribution that will artificially increase the
frequency of the observed rare event during the simulation.

N Abstraction N •, fStructural
Analysis

Λ

τ Fox-Glynn
truncation

{cn}n+
n−

n+, n−

Computation of
the embedded

DTMC

C•Λ

Numerical
evaluation

Simulation with
importance sampling {µ•n}n+

n−

Confidence interval
generation

Figure 4. Principles of the methodology

The choice of this distribution is crucial for the efficiency
of the method and usually cannot be found without a deep
understanding of the system to be studied. The generation of
paths is done according to a modified DTMC C′, with the same
state space, but modified transition matrix P′. P′ must satisfy:

P(s, s′) > 0⇒ P′(s, s′) > 0 ∨ s′ = s− (1)

which means that this modification cannot remove transitions
that have not s− as target, but can add new transitions. The
method maintains a correction factor called L initialised to 1;
this factor represents the likelihood of the path. When a path
crosses a transition s → s′ with s′ 6= s−, L is updated by
L ← L P(s,s′)

P′(s,s′) . When a path reaches s−, L is set to zero.
If P′ = P (i.e. no modification of the chain), the value of
L when the path reaches s+ (resp. s−) is 1 (resp. 0). Let Vs
(resp. Ws) be the random variable associated with the final
value of L for a path starting in x in the original model C
(resp. in C′). By definition, the expectation E(Vs0) = p and
by construction of the likelihood, E(Ws0) = p. Of course, a
useful importance sampling should reduce the variance of Ws0
w.r.t. to the one of Vs0 equal to p(1− p) ≈ p for a rare event.

V. OUR METHODOLOGY FOR IMPORTANCE SAMPLING

A. Previous work

In [5], [6], we provided a method to compute a biased
distribution for importance sampling: we manually design an
abstract smaller model, with a behaviour close to that of the
original model, that we call the reduced model and perform
numerical computations on this smaller model to obtain the
biased distribution. Furthermore, when the correspondence of
states between the original model and the reduced one satisfies
a good property called the variance reduction guarantee, Ws0
is a binary random variable (i.e. a rescaled Bernoulli variable)
thus allowing to get a true confidence interval with reduced
size. We applied this method in order to tackle the estimation
of time bounded property in CTMCs, that is the probability
to satisfy a formula aU [0,τ ]b, when it is a rare event. Let us
outline the different steps of the method which is depicted in
Figure 4.



Abstraction of the model. As discussed above, given a SPN
N modelling the system to be studied, we manually design an
appropriate reduced one N • and a correspondence function f
from states of N to states of N •. Function f is defined at the
net level (see Section VI).

Structural analysis. Importance sampling was originally pro-
posed for DTMCs. In order to apply it for CTMC C associated
with net N , we need to uniformize C (and also C• associated
with N •) which means finding a bound Λ for exit rate of
states, i.e. markings, considering Λ as the uniform exit rate
of states and rescaling accordingly the transition probability
matrices [14]. Since the rates of transitions depend on the
current marking, determining Λ requires a structural analysis
like invariant computations for bounding the number of tokens
in places.

Fox-Glynn truncation. Given a uniform chain with initial
state s0, exit rate Λ, and transition probability matrix P, the
state distribution πτ at time τ is obtained by the following
formula:

πτ (s) =
∑
n≥0

e−Λτ (Λτ)n

n!
Pn(s0, s).

This value can be estimated, with sufficient precision, by
applying [15]. Given two numerical accuracy requirements α
and β, truncation points n− and n+ and values {cn}n−≤n≤n+

are determined such that for all n− ≤ n ≤ n+:

cn(1−α−β) ≤ e−Λτ (Λτ)n

n!
≤ cn and

∑
n<n−

e−Λτ (Λτ)n

n!
≤ α

∑
n>n+

e−Λτ (Λτ)n

n!
≤ β

Computation of the embedded DTMC. Since N • has been
designed to be manageable, we build the embedded DTMC
C•Λ of N • after uniformization. More precisely, since we want
to evaluate the probability to satisfy formula aU [0,τ ]b, the
states satisfying a (resp. ¬a ∧ ¬b) are aggregated into an
absorbing accepting (resp. rejecting) state. Thus the considered
probability µτ (s•) is the probability to be in the accepting state
at time τ starting from state s•.

Numerical evaluation. Matrix P′ used for importance sam-
pling simulation in the embedded DTMC of N to evaluate
formulas aU [0,n]b for n− ≤ n ≤ n+, is based on the
distributions {µ•n}0<n≤n+ , where µ•n(s•) is the probability
that a random path of the embedded DTMC of N • starting
from s• fulfills aU [0,n]b. Such a distribution is computed by a
standard numerical evaluation. However since n+ can be large,
depending on the memory requirements, this computation can
be done statically for all n or dynamically for a subset of such
n during the importance sampling simulation (more details are
given in appendix).

Simulation with importance sampling. This is done as for a
standard simulation except that the random distribution of the
successors of a state depend on both the embedded DTMC
CΛ and the values computed by the numerical evaluation.
Moreover, all formulas aU [0,n]b for n− ≤ n ≤ n+ have to
be evaluated increasing the time complexity of the method
w.r.t. the evaluation of an unbounded timed until formula.

Generation of the confidence interval. The result of the
simulations is a family of confidence intervals indexed by
n− ≤ n ≤ n+. Using the Fox-Glynn truncation, we weight
and combine the confidence intervals in order to return the
final interval.

B. Tackling signalling cascades

The reduced net that we design for signalling cascades
does not satisfy the variance reduction guarantee. This has
two consequences: (1) we can perform a much more efficient
importance sampling simulation and (2) we need to propose
different ways of computing “approximate” confidence inter-
vals. We now detail these issues.

Importance sampling for multiple formulas. A naive imple-
mentation would require to apply statistical model checking
of formulas aU [0,n]b for all n between n− and n+, but such
a number can be large. A more tricky alternative consists in
producing all trajectories until time horizon n+ and updating
the simulation results at the end of a trajectory for all the
intervals [0, n] with n− ≤ n ≤ n+ as follows. If the
trajectory has reached the absorbing rejecting state s− then
it is an unsuccessful trajectory for all intervals. Otherwise if
it has reached the absorbing accepting state s+ at time n0

then for all n ≥ n0 it is a successful trajectory and for all
n < n0 it is unsuccessful. Doing this way, every trajectory
contributes to all evaluations, and we significantly increase
the sample size without increasing computational cost. The
accuracy of the results is improved. However, this requires that
the importance sampling associated with time interval [0, n+]
is also appropriate for the other intervals and in particular with
time interval [0, n−] which is the case for our experiments (see
section VI).

Confidence interval estimation. The result of each trajectory
of the simulation is a realisation of the random variable
Ws0 = Xs0Ls0 where the binary variable Xs0 indicates
whether a trajectory starting from s0 is succesful and the
positive random variable Ls0 is the (random) likelihood. Ob-
serve that E(Ws0) = E(Ls0 |Xs0 = 1)E(Xs0). Since Xs0
follows a Bernoulli distribution, a true confidence interval
can be produced for E(Xs0). For E(Ls0 |Xs0 = 1) several
approaches are possible among them we have selected three
possible computations ranked by conservation degree.

1) The more classical way to compute confidence inter-
vals is to suppose that the distribution is Gaussian;
this is asymptotically valid if the variance is finite,
thanks to the central limit theorem.

2) Another method is to use a pseudo Chernoff-
Hoeffding bound. Whenever the random variable is
bounded, this method is asymptotically valid. In our
case we will use the minimal and maximal values
observed during the simulation as the bounds of Ls0 .

3) The last method, which is more conservative than the
previous one, consists in returning the minimal and
maximal observed values as the confidence interval.

VI. EXPERIMENTS

We have analysed three properties, the last two are in-
spired by [1]. Recall that the initial marking of the model is



Table II. COMPUTATIONAL COMPLEXITY RELATED TO THE
EVALUATION OF p1

N COSMOS MARCIE

Reduction factor time memory time memory
1 - - - 4 514MB
2 38 20,072 3,811MB 326 801MB
3 558 15,745 15,408MB 43,440 13,776MB
4 4667 40,241 3,593MB Out of Memory: >32GB
5 27353 51,120 19,984MB

parametrized by a scaling factor N . For the first two properties,
the reduced model is the same model but with local smaller
scaling factors on the different layers of phosphorylation.
Every state of the initial model is mapped (by f ) to a state
of the abstract model which has the “closest” proportion of
chemical species. For instance let N = 4 which corresponds
to 16 species of the first layer, a state with 6 tokens in Raf and
10 tokens in RafP is mapped, for a reduced model with N = 3,
to a state with 4 = b6×3/4c tokens in Raf and 8 = d10×3/4e
tokens in RafP (see the appendix for a specification of f ).

All statistical experiments have been carried out with our
tool COSMOS [16]. COSMOS is a statistical model checker for
the HASL logic [16]. It takes as input a Petri net (or a high-
level Petri net) with general distributions for transitions. It
performs an efficient statistical evaluation of the stochastic
Petri net by generating a code per model and formula. In the
case of importance sampling, it additionally takes as inputs
the reduced model and the mapping function specified by a C
function and returns the different confidence intervals.

All experiments have been performed on a machine with
16 cores running at 2 GHz and 32 GB of memory both for the
statistical evaluation of COSMOS and the numerical evaluation
of MARCIE.

A. Maximal peak of the output signal

The first property is expressed as a time-bounded reacha-
bility formula assessing the strength of the output signal of
the last layer: “What is the probability to reach within 10
time units a state where the total mass of ERK is doubly
phosphorylated?”, associated with probability p1 defined by:

p1 = Pr(True U≤10(ERKPP = 3N))

The inner formula is parametrized by N , the scaling factor
of the net (via its initial marking). The reduced model that
we design for COSMOS uses different scaling factors for the
three layers in the signalling cascade. The first two layers of
phosphorylation which are based on Raf and MEK always use
a scaling factor of 1, whereas the last layer involving ERK uses
a scaling factor of N . The second column of Table II shows
the ratio between the number of reachable states of the original
and the reduced models.We have performed experiments with both COSMOS and
MARCIE. The time and memory consumptions for increasing
values of N are reported in Table II. For each value of N we
generate one million trajectories with COSMOS. We observe
that the time consumption significantly increases between
N = 3 and N = 4. This is due to a change of strategy in
the space/time trade-off in order to not exceed the machine
memory capacity.

Table III. NUMERICAL VALUES ASSOCIATED WITH p1

N COSMOS MARCIE

Gaussian CI Chernoff CI MinMax CI Output
1 2.07E-12
2 [3.75E-27,5.88E-26] [3.75E-27,4.54E-25] [3.75E-27,1.57E-23] 8.18E-26
3 [4.34E-42,1.72E-39] [4.34E-42,1.82E-38] [4.43E-42,1.87E-37] 2.56E-39
4 [1.54E-57,8.54E-56] [1.54E-57,1.98E-55] [1.78E-57,7.05E-55] Out of Memory
5 [3.97E-73,2.33E-70] [3.97E-73,7.30E-70] [5.44E-73,2.24E-69]

MARCIE suffers an exponential increase w.r.t. both time and
space resources. When N = 3, it is slower than COSMOS and
it is unable to handle the case N = 4.

Table III depicts the values returned by the two tools:
MARCIE returns a single value, whereas COSMOS returns three
confidence intervals (discussed above) with a confidence level
set to 0.99. We observe that confidence intervals computed
by the Gaussian analysis neither contain the result, the ones
computed by Chernoff-Hoeffding do not contain it for N = 3,
and the most conservative ones always contain it (when this
result is available). An analysis of the likelihood Ls0 is detailed
in the appendix.

Figure 6 illustrates the dependency of p1 with respect to
the scaling factor N . It appears that the probability p1 depends
on N in an exponential way. The constants occurring in the
formula could be interpreted by biologists.

B. Conditional maximal signal peak

The network structure of each layer in the signalling cas-
cade presents a cyclic behaviour, i.e. phosphorylated proteins,
serving as signal for the next layer, can also be dephos-
phorylated again, which corresponds to a decrease of the
signal strength. Thus an interesting property of the signalling
cascade is the probability of a further increase of the signal
strength under the condition that a certain strength has already
been reached. We estimate this quantity for the first layer
in the signalling cascade, i.e. RafP, and ask specifically for
the probability to reach its maximal strength, 4N : “What is
the probability of the concentration of RafP to continue its
increase and reach 4N , when starting in a state where the
concentration is for the first time at least L?”. This is a special
use case of the general pattern introduced in [1].

p2 = Prπ((RafP ≥ L) U (RafP ≥ 4N))

where π is the distribution over states when satisfying for the
first time the state formula RafP ≥ L (previously called a
filter).

This formula is parametrized by threshold L and scaling
factor N . The results for increasing N and L are reported
in Table IV (confidence intervals are computed by Chernoff-
Hoeffding method). As before, MARCIE cannot handle the case
N = 3, the bottleneck being here the execution time.

It is clear that p2 is an increasing function of L. More
precisely, experiments point out that p2 increases approxima-
tively exponentially by at least one magnitude order when L
is incremented. However this dependency is less clear than the
one of the first property.



Table IV. NUMERICAL VALUES ASSOCIATED WITH p2

N L COSMOS MARCIE

confidence interval time result time memory
2 2 [2.39E-13 , 1.07E-09] 31 5.55E-10 90 802 MB
2 3 [2.18E-10 , 6.92E-08] 110 6.64E-08 136 816 MB
2 4 [9.33E-08 , 3.54E-05] 256 3.01E-06 276 798 MB
2 5 [1.16E-05 , 6.08E-04] 1000 7.16E-05 759 801 MB
2 6 [5.42E-04 , 1.21E-03] 5612 1.27E-03 3180 804 MB
3 5 [1.82E-12 , 9.78E-09] 459 Time > 48 hours
3 6 [3.41E-10 , 9.66E-08] 1428
3 7 [1.81E-08 , 2.23E-06] 7067
3 8 [8.72E-07 , 2.71E-06] 4460
3 9 [1.42E-06 , 4.59E-05] 4301
3 10 [2.69E-04 , 9.34E-04] 6420
4 10 [5.12E-09 , 2.75E-08] 8423 Memory > 32GB
4 11 [8.23E-08 , 2.97E-07] 7157
4 12 [9.84E-07 , 1.86E-06] 18730

VII. CONCLUSION

We have studied rare events in signalling cascades with the
help of an improved importance sampling method implemented
in COSMOS. As demonstrated by means of our scalable case
study, our method has been able to cope with huge models that
could not be handled neither by numerical computations nor by
standard simulations. In addition, analysis of the experiments
has pointed out interesting dependencies between the scaling
parameter and the quantitative behaviour of the model.

In future work we intend to incorporate other types of
quantitative properties, such as the mean time a signal needs to
exceed a certain threshold, the mean travelling time from the
input to the output signal, or the relation between the variation
of the enzymes of two consecutive levels. We also plan to
analyse other biological systems for which the evaluation of
tiny probabilities might be relevant like mutation rates in
growing bacterial colonies [17].
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VIII. APPENDIX

A. Algorithmic considerations

The importance sampling simulation needs the family of
vectors {µ•n}0<n≤n+ . They can be computed iteratively one
from the other with overall time complexity Θ(mn+) where
m is the number of states of N •. More precisely, given P•

the transition matrix of C•Λ (taking into account the transfor-
mation corresponding to the two absorbing states with s•+ the
accepting one):

∀s• 6= s•+ µ•0(s•) = 0, µ•0(s•+) = 1 and µ•n = P•·µ•n−1

Thus as illustrated by Algorithm 1, one can perform this com-
putation before starting the importance sampling simulation.
But for large values of n+, the space complexity to store them
becomes intractable. However looking more carefully at the
importance sampling specification, it appears that at simulation
time n+−n one only needs two vectors {µ•n} and {µ•n−1} [6].
So depending on the memory requirements, we propose three
alternative methods.

Let l(< n+) be an integer. In the precomputation stage,
the second method only stores the bn+

l c+ 1 vectors µ•n with
n multiple of l in list Ls and µ•

lbn+

l c+1
, . . . , µ•n+ in list K

(see the precomputation stage of Algorithm 2). During the
simulation stage, at time n, with n = ml, the vector µ•n−1
is present neither in Ls nor in K. So the method uses the
vector µ•l(m−1) stored in Ls to compute iteratively all vectors
µ•l(m−1)+i = P •i ·µ•l(m−1) for i from 1 to l−1 and store them
in K (see the step computation stage of Algorithm 2). Then it
proceeds to l consecutive steps of simulation without anymore
computations. We choose l close to

√
n+ in order to minimize

the space complexity of such a factorization of steps.

Let k = blog2(n+)c + 1. In the precomputation stage,
the third method only stores k + 1 vectors in Ls. More
precisely, initially using the binary decomposition of n+

(n+ =
∑k
i=0 an+,i2

i), the list Ls of k+ 1 vectors consists of
wi,n = µ•∑k

j=i an,j2j , for all 1 ≤ i ≤ k+ 1 (see the precompu-
tation step of Algorithm 3). During the simulation stage at time
n, with the binary decomposition of n (v =

∑k
i=0 an,i2

i), the
list Ls consists of wi,n = µ•∑k

j=i an,j2j , for all 1 ≤ i ≤ k + 1.
Observe that the first vector w1,n is equal to µ•n. We obtain
µ•n−1 by updating Ls according to n − 1. Let us describe
the updating of the list performed by the stepcomputation of
Algorithm 3. Let i0 be the smallest index such that an,i0 = 1.
Then for i > i0, an−1,i = an,i, an−1,i0 = 0 and for i < i0,
an−1,i = 1. The new list Ls is then obtained as follows.
For i > i0 wi,n−1 = wi,n, wi0,n−1 = wi0−1,n. Then the
vectors for i0 < i, the vectors wi,n−1 are stored along iterated
2i0−1−1 matrix-vector products starting from vector wi0,n−1:
w(j, v − 1) = P •2

j

w(j + 1, n− 1).

The computation at time n requires 1 + 2 + · · · + 2i0−1

products matrix-vector, i.e. Θ(m2i0). Noting that the bit i
is reset at most m2−i times, the complexity of the whole
computation is

∑k
i=1 2k−iΘ(m2i) = Θ(mn+ log(n+)).

The fourth method consists in computing vector µ•v from
the initial vector at each step (see Algorithm 4). In this method
we only need to store two copies of the vector.

Table V. COMPARED COMPLEXITIES

Complexity Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Space mn+ 2m

√
n+ m logn+ 2m

Time
for the Θ(mn+) Θ(mn+) Θ(mn+) 0
precomputation
Additional time
for the 0 Θ(mn+) Θ(mn+ log(n+)) Θ(m(n+)2)
simulation

Algorithm 1
Precomputation(n+, µ•0, P

•) Result: Ls
// List Ls fulfills Ls(i) = µ•i
Ls(0)← µ•0
for i = 1 to n+ do

Ls(i)← P •Ls(i− 1)Algorithm 2
Precomputation(n+, µ•0, P

•) Result: Ls,K
// List Ls fulfills Ls(i) = µ•i·l
l← b√n+c w ← µ•0
for i from 1 to bn+

l cl do
w ← P •w if i mod l = 0 then

Ls( il )← w

// List K contains µ•
bn+

l cl+1
, . . . , µ•n+

for i from bn+

l cl + 1 to n+ do
w ← P •w K(i mod l)← w

Stepcomputation(n, l, P •,K, Ls) // Updates K
when needed

if n mod l = 0 then
w ← Ls(nl − 1)
for i from (nl − 1)l + 1 to n− 1 do

w ← P •0w K(i mod l)← w

Algorithm 3
Precomputation(n+, µ•0, P

•) Result: Ls
// Ls fulfills Ls(i) = µ•∑k

j=i an+,j2j

k ← blog2(n+)c + 1 v ← µ•0 Ls(k + 1) ← v for i from k
downto 0 do

if an+,i = 1 then
for j from 1 to 2i do

w ← P •w

Ls(i)← w

Stepcomputation(n, l, P •, Ls) // Ls is updated
accordingly to n− 1

i0 ← min(i | an,i = 1) w ← Ls(i0 + 1) Ls(i0)← n
for i from i0 − 1 downto 0 do

for j = 1 to 2i do
w ← P •w

Ls(i)← w

Algorithm 4
Stepcomputation(n, µ•0, P

•) Result: v
// Vector v equal to µ•n
v ← µ•0
for i = 1 to n do

v′ ← P •v v ← v′
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Figure 5. Distribution of trajectories and their contribution

B. Experimental analysis of the likelihood

We describe here some technical details of the simulation
done for evaluating probability p1 (from subsection VI-A). Re-
call the likelihood of a trajectory requires the distribution of the
random variable Ws0 (see subsection IV-A0e). Proposition 6 of
[5] ensures that Ws0 takes values in {0}∪[µ•n+(f(s)),∞[. This
was proven for DTMCs but can be adapted in a straightforward
way for CTMCs. Values taken by Ls0 are taken by Ws0 when
at the end of a successful trajectory, therefore these values are
in [µ•n+(f(s)),∞[.

We simulate the system for the first formula with N = 2
and a discrete horizon of 615 (615 is the right truncation point
given by Fox-Glynn algorithm). The result of the simulation is
represented as an histogram shown in Figure 5. The total num-
ber of trajectories is 69000, 49001 of them are not successful.
We observe that most of the successful trajectories end with a
value close to 2.10−35, and that a few trajectories have a value
close to 10−32. This is represented by an histogram which
is shown as the green part of Figure 5 (with a logarithmic
scale for the abscissa). We also represent the histogram of the
contribution of the trajectories for the estimation of the mean
of Ls0 , that is the red part of the figure (with a logarithmic
scale for the ordinate). We observe that the contribution to
this mean is almost uniform. Thus a trajectory ending with a
likelihood close to 10−32 have a larger impact than one ending
with a likelihood close to 1034. This means that an estimator
of the mean value of L(s0,u) will underestimate the expectation
of L(s0,u). To produce a framing of the result, one has to use a
very conservative method to avoid underestimating the result.

C. Mapping function for properties 1 and 2

We describe here formally the reduction function f for
properties 1 and 2. The reduction function must map each
marking of the Petri net to a marking of the reduced Petri net.

First we observe that the signalling cascades SPN contains
three places invariants of interest:

• The total number of tokens in the set of
places {Raf,Raf RasGTP,RafP Phase1,RafP,
MEK RafP, MEKP RafP} is equal to 4N .

• The number of tokens in the set of places {MEK,
MEK RafP, MEKP Phase2, MEKP, MEKP RafP,
MEKPP Phase2, MEKPP, ERK MEKPP,
ERKP MEKPP} is equal to 2N

• The number of tokens in the set of places {ERK,
ERK RafP, ERKP Phase2, ERKP, ERKP RafP,
ERKPP Phase2, ERKPP} is equal to 3N

We also introduce three sequences of places one for each
layer of phosphorylation.

• S1 = [Raf,Raf RasGTP,RafP Phase1,RafP]

• S2 = [MEK, MEK RafP, MEKP Phase2, MEKP,
MEKP RafP, MEKPP Phase2,MEKPP]

• S3 = [ERK, ERK RafP, ERKP Phase2, ERKP,
ERKP RafP, ERKPP Phase2, ERKPP]

Let us remark that a marking of the SPN N is uniquely
determined by its values on places in S1, S2 and S3.

We define a function g such that: for all positive integer
m, positive real number p and vector of integers of size k,
v = (vi)

k
1 , g (p,m,v) is the vector of integers of size k, u =

(ui)
k
1 , defined by:

∀i > 1, ui = min

(
dvi · pe ,m−

k∑
l=i+1

ul

)
and u1 = m−

k∑
l=2

ul

One can see that the g is properly defined and that the sum of
the components of u are equal to m.

The reduction function f for the two properties is a
mapping from the set of states of SPN N to the set of
states of the reduced SPN N •. This function takes as input
the marking of a sequence of places that uniquely define the
state. This sequence can be decompose on the three layers of
phosphorylation, that is S1 for the first layer, S2 for the second
layer and S3 for the last layer.

Recall that layers are not independent one from the others
because proteins of one layer are used to activate the following
layer; this can be seen on the P-invariant that contains places
of the following layer. The mapping function that we construct
preserve these P-invariants.

Roughly, on each layer Si, this function f applies a
function of the form g(pi,mi,−).

Precisely, given a scaling factor N and a scaling factor for
each of the three layers of the reduced model, respectively
N1, N2 and N3, the reduction function f maps the marking m
on the marking m• defined as follow:

• (m•(p))p∈S3
= g

(
N3

N , 3N3, (m(p))p∈S3

)
• (m•(p))p∈S2 = g

(
N2

N , 2N2 −m•(ERK MEKPP)−m•(ERKP MEKPP), (m(p))p∈S2

)
• (m•(p))p∈S1

= g
(
N1

N , 4N1 −m•(MEK RafP)−m•(MEKP RafP), (m(p))p∈S1

)
One can see that the three P-invariants are preserved in the

reduced model by f .

For the first property we take N1 = N2 = 1 and N3 = N .
For the second property, we take N1 = 1, N2 = N and N3 =
0.



Table VI. EXPERIMENTS ASSOCIATED WITH p3

N L COSMOS MARCIE

confidence interval time result time memory
2 2 [0.8018,0.8024] 4112 0.8021 75 730MB
2 3 [0.4201,0.4209] 7979 0.4205 137 723MB
2 4 [0.1081,0.1086] 10467 0.1084 163 725MB
2 5 [0.0122,0.0124] 11122 0.0123 123 725MB
2 6 [6.20E-4,6.61E-4] 11185 6.32E-4 129 725MB
2 7 [1.02E-5,1.61E-5] 11194 1.24E-5 156 725MB
3 6 [0.0136,0.0138] 14648 0.0137 17420 10.3GB
3 7 [1.45E-3,1.51E-3] 14752 1.48E-3 18155 10.3GB
3 8 [9.99E-5,1.17E-4] 14739 1.06E-4 18433 10.3GB
3 9 [3.53E-6,7.36E-6] 14734 4.86E-6 18353 10.3GB
3 10 [1.03E-8,9.27E-7] 14743 1.29E-7 18355 10.3GB
3 11 [0 ,5.30E-7] 14766 1.48E-9 18047 10.3GB
4 8 [1.47E-3,1.53E-3] 17669 Out of Memory
4 9 [1.52E-4,1.73E-4] 17628
4 10 [9.99E-6,1.59E-5] 17656
4 11 [1.54E-7,1.57E-6] 17632
4 12 [0 ,5.30E-7] 17664
5 8 [6.92E-3,7.06E-3] 20367
5 9 [1.13E-3,1.19E-3] 20421
5 10 [1.46E-4,1.67E-4] 20419
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Figure 6. Highlighting an exponential dependency

D. Signal propagation

To demonstrate that the increases of the signals are tempo-
rally ordered w.r.t. the layers in the signalling cascade, and by
this way proving the travelling of the signals along the layers,
we explore the following property: “What is the probability
that, given the initial concentrations of RafP, MEKPP and
ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP
remain at zero, i.e. RafP is the first species to react?”. While
this property has its focus on the beginning of the signalling
cascade, it is obvious how to extend the investigation by further
properties covering the entire signalling cascade.

p3 = Pr((MEKPP = 0) ∧ (ERKPP = 0))U(RafP > L))

This formula is parametrized by L. Due to the lack of space
only some values of L in [0, 4N [ are reported. The results
for increasing N and L are given in Table VI. As can be
observed, the probability to satisfy this property is not a rare
event thus no importance sampling is required. Instead results
are obtained by a plain Monte Carlo simulation generating 10
millions of trajectories. For N > 3 MARCIE requires more
than 32GB of memory thus the computation was stopped. On
the other hand, the memory requirement of COSMOS is around
50MB for all experiments.

We also observed that as expected the probability exponen-
tially decreases with respect to L.


