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Abstract Signalling cascades are a recurrent pattern of biological regu-
latory systems whose analysis has deserved a lot of attention. It has been
shown that stochastic Petri nets are appropriate to model such systems
and evaluate the probabilities of specific properties. Such an evaluation
can be done numerically when the combinatorial state space explosion
is manageable or statistically otherwise. However, when the probabil-
ities to be evaluated are too small, random simulation requires more
sophisticated techniques for the handling of rare events. Here we show
how such involved methods can be successfully applied for signalling cas-
cades. More precisely, we study three relevant properties of a signalling
cascade with the help of the COSMOS tool. Our experiments point out
interesting dependencies between quantitative parameters of the regula-
tory system and its transient behaviour. In addition, they demonstrate
that we can go beyond the capabilities of MARCIE, which provides one
of the most efficient numerical solvers.

1 Introduction

Signalling cascades. Signalling processes play a crucial role for the regulatory
behaviour of living cells. They mediate input signals, i.e. the extracellular stimuli
received at the cell membrane, to the cell nucleus, where they enter as output
signals the gene regulatory system. Understanding signalling processes is still
a challenge in cell biology. To approach this research area, biologists design
and explore signalling networks, which are likely to be building blocks of the
signalling networks of living cells. Among them are the type of signalling cascades
which we investigate in our paper.

A signalling cascade is a set of reactions which can be grouped into levels.
At each level a particular enzyme is produced (e.g. by phosphorylation); the
level generally also includes the inverse reactions (e.g., dephosphorylation). The
system constitutes a cascade since the enzyme produced at some level is the
catalyser for the reactions at the next level. The catalyser of the first level
is usually considered to be the input signal, while the catalyser produced by
the last level constitutes the output signal. The transient behaviour of such a
system presents a characteristic shape, the quantity of every enzyme increases to
some stationary value. In addition, the increases are temporally ordered w.r.t.
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the levels in the signalling cascade. This behaviour can be viewed as a signal
travelling along the levels, and there are many interesting properties to be studied
like the travelling time of the signal, the relation between the variation of the
enzymes of two consecutive levels, etc.

In [11], it has been shown how such a system can be modelled by a Petri
net which can either be equipped with continuous transition firing rates leading
to a continuous Petri net which determines a set of differential equations or by
stochastic transition firing rates leading to a stochastic Petri net. This approach
emphasises the importance of Petri nets which, depending on the chosen seman-
tics, permit to investigate particular properties of the system. In this paper we
wish to explore the influence of stochastic features on the signalling behaviour,
and thus we focus on the use of stochastic Petri nets.

Analysis of stochastic Petri nets can be performed either numerically or sta-
tistically. The former approach is much faster than the latter and provides exact
results up to numerical approximations, but its application is limited by the
memory requirements due to the combinatory explosion of the state space.

Statistical evaluation of rare events. Statistical analysis means to estimate
the results by evaluating a sufficient number of simulations. However, standard
simulation is unable to efficiently handle rare events, i.e. properties whose prob-
ability of satisfaction is tiny. Indeed the number of trajectories to be generated
in order to get an accurate interval confidence for rare events becomes pro-
hibitively huge. Thus acceleration techniques [16] have been designed to tackle
this problem whose principles consist in (1) favouring trajectories that satisfy
the property, and (2) numerically adjusting the result to take into account the
bias that has been introduced. This can be done by splitting the most promising
trajectories [14] or importance sampling [10], i.e. modifying the distribution dur-
ing the simulation. In previous work [4], some of us have developed an original
importance sampling method based on the design and numerical analysis of a
reduced model in order to get the importance coefficients. First proposed for
checking “unbounded until” properties over models whose semantics is a dis-
crete time Markov chain, it has been extended to also handle “bounded until”
properties and continuous time Markov chains [5].

Our contribution. In this paper we consider three families of properties for
signalling cascades that are particularly relevant for the study of their behaviour
and that are (depending on a scaling parameter) potentially rare events. From
an algorithmic point of view, this case study raises interesting issues since the
combinatorial explosion of the model quickly forbids the use of numerical solvers
and its intricate (quantitative) behaviour requires elaborated and different ab-
stractions depending on the property to be checked.

Due to these technical difficulties, the signalling cascade analysis has led us to
substantially improve our method and in particular the way we obtain the final
confidence interval. From a biological point of view, experiments have pointed
out interesting dependencies between the scaling parameter of the model and
the probability of satisfying a property.



Rare Event Handling in Signalling Cascades 3

Organisation. In Section 2 we present the biological background, the signalling
cascade under study and its properties. Then in Section 3 after some recalls on
Markov chains and stochastic Petri nets, we model signalling cascades by SPNs.
In Section 4, we develop our method for handling rare events. Then in Sec-
tion 5 we report and discuss the results of our experiments. Finally in Section 6,
we conclude and give some perspectives to our work. Additional details about
algorithmic considerations are provided in the appendix.

2 Signalling cascades

In technical terms, signalling cascades can be understood as networks of bio-
chemical reactions transforming input signals into output signals. By this way,
signalling processes determine crucial decisions a cell has to make during its de-
velopment, such as cell division, differentiation, or death. Malfunction of these
networks may potentially lead to devastating consequences on the organism, such
as outbreak of deceases or immunological abnormalities. Therefore, cell biology
tries to increase our understanding of how signalling cascades are structured
and how they operate. However, signalling networks are generally hard to ob-
serve and often highly interconnected, and thus signalling processes are not easy
to follow. For this reason, typical building blocks are designed instead, which are
able to reproduce observed input/output behaviours.

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

Figure 1. The general scheme of the considered three-level signalling cascade; RasGTP
serves as input signal and ERKPP as output signal.
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The case study we have chosen for our paper is such a signalling building
block: the mitogen-activated protein kinase (MAPK) cascade [15]. This is the
core of the ubiquitous ERK/MAPK network that can, among others, convey cell
division and differentiation signals from the cell membrane to the nucleus. The
description starts at the RasGTP complex which acts as an enzyme (kinase) to
phosphorylate Raf, which phosphorylates MAPK/ERK Kinase (MEK), which in
turn phosphorylates Extracellular signal Regulated Kinase (ERK). We consider
RasGTP as the input signal and ERKPP (activated ERK) as the output signal.
This cascade (RasGTP→ Raf→MEK→ ERK) of protein interactions is known
to control cell differentiation, while the strength of the effect depends on the ERK
activity.

The scheme in Figure 1 describes the typical modular structure for such a
signalling cascade, see [7]. Each layer corresponds to a distinct protein species.
The protein Raf in the first layer is only singly phosphorylated. The proteins in
the two other layers, MEK and ERK respectively, can be singly as well as doubly
phosphorylated. In each layer, forward reactions are catalysed by kinases and
reverse reactions by phosphatases (Phosphatase1, Phosphatase2, Phosphatase3).
The kinases in the MEK and ERK layers are the phosphorylated forms of the
proteins in the previous layer. Each phosphorylation/dephosphorylation step
applies mass action kinetics according to the pattern A+E 
 AE → B+E. This
pattern reflects the mechanism by which enzymes act: first building a complex
with the substrate, which modifies the substrate to allow for forming the product,
and then disassociating the complex to release the product; for details see [6].

Having the wiring diagram of the signalling cascade, a couple of interesting
questions occur whose answers would shed some additional light on the subject
under investigation. Among them are an assessment of the signal strength in each
level, and specifically of the output signal. We will consider these properties in
Sections 5.1 and 5.2. The general scheme of the signalling cascade also suggests
a temporal order of the signal propagation in accordance with the level order.
What cannot be derived from the structure is the extend to which the signals
are built simultaneously; we will discuss this in Section 5.3.

3 Petri net modelling

3.1 Stochastic Petri nets

Due to its graphical representation and bipartite nature, Petri nets are highly
appropriate to model biochemical networks. When equipped with a stochastic
semantics, yielding stochastic Petri nets (SPN) [1], they can be used to perform
quantitative analysis.

Definition 1 (SPN). A stochastic Petri net N is defined by:

– a finite set of places P ;
– a finite set of transitions T ;
– a backward (resp. forward) incidence matrix Pre (resp. Post) from P × T

to N.
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– a set of state-dependent rates of transitions {µt}t∈T such that µt is a mapping
from NP to R>0.

A marking m of an SPN N is an item of NP . A transition t is fireable in
marking m if for all p ∈ P m(p) ≥ Pre(p, t). Its firing leads to marking m′

defined by: for all p ∈ P m′(p) = m(p) − Pre(p, t) + Post(p, t). It is denoted

either as m
t−→ m′ or as m

t−→ omitting the next marking. Let σ = σ1 . . . σn ∈ T ∗,
then σ is fireable from m and leads to m′ if there exists a sequence of markings
m = m0,m1, . . . ,mn such that for all 0 ≤ k < n, mk

σk−→ mk+1. This firing

is also denoted m
σ−→ m′. Let m0 be an initial marking, the reachability set

Reach(N ,m0) is defined by: Reach(N ,m0) = {m | ∃σ ∈ T ∗ m0
σ−→ m}. The

initialised SPNs (N ,m0) that we consider do not have deadlocks: for all m ∈
Reach(N ,m0) there exists t ∈ T such that m

t−→.

The semantics of an SPN is a continuous time Markov chain (CTMC). For
further developments, in particular the use of uniformisation, we also introduce
discrete time Markov chains (DTMC).

Definition 2 (DTMC). A discrete time Markov chain C is defined by:

– a set of states S with an initial state s0;
– a transition probability matrix P of size S × S.

The state of the chain at (discrete) time n is a random variable Sn defined
inductively by Pr(S0 = s0) = 1 and,

Pr(Sn+1 = s′ | Sn = s, Sn−1 = sn−1, . . . , S0 = s0) = Pr(Sn+1 = s′ | Sn = s) = P(s, s′)

A continuous time Markov Chain is a DTMC in which exit rates are asso-
ciated with states. A rate assigns to an exponential distribution to the sojourn
time in the corresponding state.

Definition 3 (CTMC). A continuous time Markov Chain C is defined by:

– a set of states S with an initial state s0;
– a transition matrix P of size S × S.
– a rate λs associated with every state s ∈ S;

The behaviour of C is defined by two families of random variables: {Sn}n∈N and
{Tn}n∈N. Sn denotes the state of the chain after n steps while Tn denotes the
time elapsed in state Sn before the next step. Sn is defined as for a DTMC while
Tn is defined by:

Pr(Tn ≤ τ | S0 = s0, ..., Sn = s, T0 ≤ τ0, ..., Tn−1 ≤ τn−1)

= Pr(Tn ≤ τ | Sn = s) = 1− eλs·τ

The DTMC defined by P is called embedded chain. It observes the change
of state, independently of the time elapsed in the state. In the following, we
assume that the rates are bounded, i.e. there exists some finite µ such that for
every s, λs ≤ µ. Using this hypothesis, it can be shown that for every τ ≥ 0,
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the following random variable Xτ is defined almost everywhere and denotes the
state of C at (continuous) time τ .

Xτ = SN(τ) where N(τ) = min({n |
n∑
k=0

Tk > τ})

Let π(τ) be the distribution of Xτ . Then π(τ) fulfills the following differential
equation system:

dπ

dτ
= πQ where for all s′ 6= s Q(s, s′) = λsP(s, s′) and Q(s, s) = −

∑
s′ 6=s

Q(s, s′)

Thus {π(τ)}τ∈R≥0
is fully defined by the infinitesimal generator Q.

An SPN is a high-level model whose operational semantics is a CTMC C. In
a state, enabled transition of the Petri net randomly selects an execution time
according to a Poisson process. Then the transition with earliest firing is selected
to fire yielding the new marking.

Definition 4 (CTMC of a SPN). Let N be a stochastic Petri net and m0 be
an initial marking. Then the CTMC associated with (N ,m0) is defined by:

– the set of states is Reach(N ,m0);
– the transition matrix P is defined by:

P(m,m′) =

∑
m

t−→m′
µt(m)∑

m
t−→ µt(m)

– the rate λm is defined by: λm =
∑
m

t−→ µt(m)

3.2 Running case study

We now explain how to model our running case study in the Petri net framework.
The signalling cascade is made of several phosphorylation/dephosphorylation
steps, which are built on mass/action kinetics. Each step follows the pattern
A+E 
 AE → B+E and is modelled by a small Petri net component depicted
in Figure 2. The mass action kinetics is expressed by the rate of the transitions.
The marking-dependent rate of each transition is equal to the product of the
number of tokens in all its incoming places up to a multiplicative constant given
by the biological behaviour (summing up dependencies on temperature, pressure,
volume, etc.).

The whole reaction network based on the general scheme of a three-level
double phosphorylation cascade, as given in Figure 1, is modelled by the Petri
net in Figure 3. The input signal is the number of tokens in the place RasGTP
and the output signal is the number of tokens in the place ERKPP.

This signalling cascade model represents a self-contained and closed system.
It is covered with P- and T-invariants, specifically each layer in the cascade forms
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a P-invariant consisting of all states a protein can undergo; thus the model is
bounded. Assuming an appropriate initial marking, the model is also live and
reversible; see [11] for more details, where this Petri net has been developed
and analysed in the qualitative, stochastic and continuous modelling paradigms.
In our paper we extend these analysis techniques for handling properties corre-
sponding to rare events.

We introduce a scaling factor N to parameterise how many tokens are spent
to specify the initial marking. Increasing the scaling parameter can be interpreted
in two different ways: either an increase of the biomass circulating in the closed
system (if the biomass value of one token is kept constant), or an increase of
the resolution (if the biomass value of one token inversely decreases, called level
concept in [11]). The kind of interpretation does not influence the approach we
pursue in this paper.

E

BAEA r3
r2

r1

Figure 2. Petri net pattern for mass action kinetics A+ E 
 AE → B + E.

Table 1. Development of the state space for increasing N .

N number of states N number of states

1 24,065 (4) 6 769,371,342,640 (11)
2 6,110,643 (6) 7 5,084,605,436,988 (12)
3 315,647,600 (8) 8 27,124,071,792,125 (13)
4 6,920,337,880 (9) 9 122,063,174,018,865 (14)
5 88,125,763,956 (10) 10 478,293,389,221,095 (14)

Increasing N means to increase the size of the state space and thus of the
CTMC, as shown in Table 1 which has been computed with the symbolic analysis
tool MARCIE [12]. As expected, the explosion of the state space prevents numer-
ical model checking for higher N and thus calls for statistical model checking.

Furthermore, increasing the number of states means to actually decrease the
probabilities to be in a certain state, as the total probability of 1 is fixed. With
the distribution of the probability mass of 1 over an increasingly huge number
of states, we obtain sooner or later states with very tiny probabilities, and thus
rare events. Neglecting rare events is usually appropriate when focusing on the
averaged behaviour. But they become crucial when certain jump processes such
as mutations under rarely occurring conditions are of interest.
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Raf
N*4

RasGTP N
Raf_RasGTP

RafP

RafP_Phase1

MEK_RafP MEKP_RafP

MEKP_Phase2 MEKPP_Phase2

ERK
N*3

ERK_MEKPP ERKP_MEKPP

ERKP

MEKPP

ERKPP_Phase3ERKP_Phase3
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Figure 3. Petri net modelling the three-level signalling cascade given in Figure 1; ki
are the kinetic constants for mass action kinetics, N the scaling parameter.

4 Statistical model checking with rare events

Our method is based on our previous works [4,5] but improves them in some
aspects. It requires several technical developments organised in five sections.

– In Section 4.1, we recall standard results about Markov chains and temporal
logic LTL.

– In Section 4.2, we recall statistical simulation with a focus on rare events
and importance sampling.

– In Section 4.3, we explain the core of our approach: performing an impor-
tance sampling based on an abstract model.

– In Section 4.4, we depict all the stages of the complete methodology.
– The memory requirements – while much lesser than for numerical evalua-

tion – may still become inhibitory. Thus, we propose in Section 4.5 several
algorithms offering a trade-off between time and space.
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4.1 Markov chain recalls for model checking

Uniformisation. A CTMC is said to be uniform when the rate λ = λs is inde-
pendent from s. Given a uniform chain, the distribution π(τ) is obtained by the
following formula:

π(τ) =
∑
n≥0

e−λτ (λτ)n

n!
Pn(s0, s)

Indeed using the uniform hypothesis, e−λτ (λτ)n

n! is the probability that n
transitions take place in interval [0, τ ] and Pn(s0, s) is the probability to be in
state s after n transitions.

Given a non-uniform chain with bounded rates, it is a standard approach
to transform it in a uniform Markov chain with the same distribution π(τ).
One selects some upper bound of the rates (say λ), considers λ as the uniform
transition rate and sets a transition matrix P(λ) defined by:

∀s 6= s′ ∈ S P(λ)(s, s′) =
λs
λ

P(s, s′) and P(λ)(s, s) = 1−
∑
s′ 6=s

P(λ)(s, s′)

In [8], an accurate computation of π(τ) is designed by truncating the infinite
sum. Given two numerical requirements α and β, truncation points n− and n+

and values {cn}n−≤n≤n+ are determined such that:

∀n− ≤ n ≤ n+ cn(1− α− β) ≤ e−λτ (λτ)n

n!
≤ cn and

∑
n<n−

e−λτ (λτ)n

n!
≤ α and

∑
n>n+

e−λτ (λτ)n

n!
≤ β

Model checking of Markov chains. In the context of model checking, the states
of a chain C are labelled with atomic propositions that they fulfil. Given state
s, α(s) denotes the set of propositions satisfied by s. We denote Sx = {s ∈ S |
x ∈ α(s)}, Sx = {s ∈ S | x /∈ α(s)}, Sxy = {s ∈ S | x ∈ α(s) ∧ y ∈ α(s)}, etc.

The problem we address here is the computation of the probability that a
random path starting from a fixed state s (and in particular from the initial
state) satisfies a formula ϕI where ϕ is a formula of temporal logic HASL [3]
(a variant of LTL) that can be translated in a finite automaton and I = [0, τ ]
is an interval. For sake of conciseness and readability, we only detail the case
ϕ = aUb and informally explain how to handle a general formula. Recall that
a path satisfies aU [0,τ ]b if there exists τ ′ ≤ τ such that a is satisfied along the
path at every instant less than τ ′ and b is satisfied at instant τ ′.

When C is a DTMC, let us denote µn(s), the probability that a random
path starting from s fulfils aU [0,n]b. These probabilities can be shown to be the
solution of the following system of equations (1E denotes the indicator function
of set E). 

∀u ∀s ∈ Sab µu(s) = 0

∀u ∀s ∈ Sb µu(s) = 1 and µ0 = 1Sb
∀u > 0 ∀s ∈ Sab µu(s) =

∑
s′∈S P(s, s′)µu−1(s′)

(1)
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Observe that µu(s) is increasing w.r.t. u and µ∞(s) = limu→∞ µu(s) is the
probability that a random path starting from s fulfils aUb.

The previous equations suggest a way to transform the model checking prob-
lem into a reachability problem which is more appropriate for our method. More
precisely we interpret µn(s) in a DTMC C as a reachability probability in a
DTMC Cn defined as follows.

– Sn = Sab × [1, n] ∪ {s−, s+}
– s−, s+ are absorbing states: Pn(s−, s−) = Pn(s+, s+) = 1
– ∀s, s′ ∈ Sab ∀u > 1 Pn((s, u), (s′, u− 1)) = P(s, s′),

Pn((s, u), s−) =
∑
s′∈Sab

P(s, s′), Pn((s, u), s+) =
∑
s′∈Sb P(s, s′)

– ∀s Pn((s, 1), s+) =
∑
s′∈Sb P(s, s′), Pn((s, 1), s−) = 1−Pn((s, 1), s+)

– The other transition probabilities are null.

Observe that the probability to reach s+ or s− from any state is equal to 1. More-
over by construction, it holds µ(s, u) = µu(s) where µ(s, u) is the probability to
reach s+ in Cn starting from (s, u).

When C is a CTMC, let denote µτ (s) the probability that a random path
starting from s fufills aU [0,τ ]b. Observe that µ∞(s) only depends on the em-
bedded DTMC (and in fact is equal to the corresponding value in the DTMC).
Using uniformisation with bounding rate λ, µτ (s) fulfils:

µτ (s) =
∑
n∈N

e−λτ (λτ)n

n!
µn(s)

where µn(s) corresponds to the satisfaction probability of aU [0,n]b in the embed-
ded DTMC of the uniformised CTMC.

In case of a formula specified by a deterministic finite automaton, the syn-
chronised product of the Markov chain and the automaton is still a Markov
chain with the addition of an absorbing rejection state and merging of all ac-
cepting states into another absorbing state. Then, the considered probability is
the probability to reach the accepting state in the interval [0, τ ].

4.2 Statistical model checking and rare events

Simulation recalls. The statistical approach for evaluating the expectation E(X)
of a random variable X related to a random path in a Markov chain is generally
based on three parameters: the number of simulations K, the confidence level
γ, and the width of the confidence interval lg (see [2]). Once the user provides
two parameters, the procedure computes the remaining one. Then it performs K
simulations of the Markov chain and outputs a confidence interval [L,U ] with a
width of at most lg such that E(X) belongs to this interval with a probability of
at least γ. More precisely, depending on the hypotheses, the confidence level has
two interpretations: (1) either the confidence level is truly ensured, or (2) the
required probability is only asymptotically valid (when K goes to infinity using
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central limit theorem). The two usual hypotheses for providing a true confidence
level are either that the distribution of X is known up to a parameter (e.g.
Bernoulli law with unknown success probability) or that the random variable is
bounded allowing to exploit Chernoff-Hoeffding bounds [13].

Statistical evaluation of a reachability probability. Let C be a DTMC with two
absorbing states s+ or s−, such that the probability to reach s+ or s− from any
state is equal to 1. Assume one wants to estimate p, the probability to reach
s+. Then the simulation step consists in generating K paths of C which end in
an absorbing state. Let K+ be the number of paths ending in state s+. The
random variable K+ follows a binomial distribution with parameters p and K.

Thus the random variable K+

K has a mean value p and since the distribution is
parametrised by p, a true confidence level can be ensured. Unfortunately, when
p� 1, the number of paths required for a small confidence interval is too large
to be simulated. This issue is known as the rare event problem.

Importance sampling. In order to tackle the rare event problem, the importance
sampling method uses for the generation of paths a modified DTMC C′, with
the same state space, but modified transition matrix P′. P′ must satisfy:

P(s, s′) > 0⇒ P′(s, s′) > 0 ∨ s′ = s− (2)

which means that this modification cannot remove transitions that have not s−
as target, but can add new transitions. The method maintains a correction factor
called L initialised to 1; this factor represents the likelihood of the path. When

a path crosses a transition s→ s′ with s′ 6= s−, L is updated by L← L P(s,s′)
P′(s,s′) .

When a path reaches s−, L is set to zero. If P′ = P (i.e. no modification of
the chain), the value of L when the path reaches s+ (resp. s−) is 1 (resp. 0).
Let Vs (resp. Ws ) be the random variable associated with the final value of L
for a path starting in x in the original model C (resp. in C′). By definition, the
expectation E(Vs0) = p and by construction of the likelihood, E(Ws0) = p. Of
course, a useful importance sampling should reduce the variance of Ws0 w.r.t.
to the one of Vs0 equal to p(1− p).

4.3 Abstraction for importance sampling

The importance sampling method relies on a choice of a biased distribution
that will artificially increase the frequency of the observed rare event during
the simulation. The choice of this distribution is crucial for the efficiency of the
method and usually cannot be found without a deep understanding of the system
to be studied.

The core of our method deals with a DTMC on which it computes the prob-
ability to satisfy formula aU [0,n]b. It relies on building an abstract smaller (but
still close) DTMC that we call the reduced model. On this reduced model, we
perform numerical computations to obtain the distribution corresponding to the
importance sampling.
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Definition 5. Let C be a DTMC, a DTMC C• is called a reduction of C by a
function f that maps S to S•, the state space of C•, if for all s ∈ S:

– a ∈ α(s) (resp. b ∈ α(s)) iff a ∈ α•(f(s)) (resp. b ∈ α•(f(s)))
– ∀0 < u ≤ n µ•u(f(s)) = 0⇒ µu(s) = 0

where µ•u(s•) denotes the probability that a random path in C• starting from
s• satisfies aU [0,u]b.

Given s ∈ S and 0 < u ≤ n , let hu(s) = 1
µ•u(f(s))

∑
s′∈S P(s, s′)µ•u−1(f(s′)).

The next definition introduces an important sampling based on the reduced
chain.

Definition 6. Let C be a DTMC and C• be a reduction of C by f . Then P′n is
the transition matrix on Sn the state space of Cn defined by:
Let s be a state of Sab and 0 < u ≤ n,

1. if µ•u(f(s)) = 0 then for all s′ ∈ Sn, P′n((s, u), s′) = Pn((s, u), s′)
2. if µ•u(f(s)) > 0 and u > 1 and hu(s) ≤ 1 then

a. ∀s′ ∈ Sab P′n((s, u), (s′, u− 1)) =
µ•u−1(f(s

′))

µ•u(f(s))
P(s, s′)

b. P′n((s, u), s+) = 1
µ•u(f(s))

∑
s′∈Sb P(s, s′)

c. P′n((s, u), s−) = 1− hu(s)
3. if µ•u(f(s)) > 0 and u > 1 and hu(s) > 1 then

a. ∀s′ ∈ Sab P′n((s, u), (s′, u− 1)) =
µ•u−1(f(s

′))

hu(s)µ•u(f(s))
P(s, s′)

b. P′n((s, u), s+) = 1
hu(s)µ•u(f(s))

∑
s′∈Sb P(s, s′)

c. P′n((s, u), s−) = 0.
4. if µ•1(f(s)) > 0 and h1(s) ≤ 1 then

a. P′n((s, 1), s+) = 1
µ•1(f(s))

∑
s′∈Sb P(s, s′)

b. P′n((s, 1), s−) = 1− h1(s).
5. if µ•1(f(s)) > 0 and h1(s) > 1 then

a. P′n((s, 1), s+) = 1
h1(s)µ•1(f(s))

∑
s′∈Sb P(s, s′)

b. P′n((s, τ), s−) = 0.

Let us explain the intuition underlying the previous definition. Consider a
“successful” path (s0, n), (s1, n − 1) . . . , (sk, n − k), s+. If all steps of this path
correspond to cases 2.a, 2.b or 4.a then the likelihood of this path is:

µ•n(f(s0))

µ•n−1(f(s1))
· · · µ

•
1(f(sk))

1
= µ•n(f(s0))

If some step of this path corresponds to cases 3.a, 3.b or 3.a then the (current)
likelihood is multiplied by some hu(s) > 1 thus the final likelihood of the whole
path is greater than µ•n(f(s0)). By definition, an unsuccessful path yields a null
likelihood. The next proposition summarises these observations.

Proposition 1 ([4]). Let C be a DTMC and C• be a reduction. The importance
sampling based on matrix of P′n of definition 6 has the following property: For
all s and all 0 < u ≤ n such that µ(s, u) > 0, W(s,u) is a random variable whose
range is included in {0} ∪ [µ•u(f(s)),∞[.
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Without additional properties of the reduction, it is difficult to analyse the
variance of W(s0,n). However, based on this proposition we can deduce two cri-
teria for a “good” reduction: (1) the probability µ•n(f(s0)) should be as small as
possible and (2) with high probability, during simulation the current state (s, u)
should satisfy hu(s) ≤ 1. In case the second property is always satisfied (see [4]),
Ws0,n is a rescaled Bernoulli distribution with variance µn(s0)µ•n(f(s0))−µ2

n(s0).
When the first condition is satisfied, it is much smaller than the original variance
µn(s0)− µ2

n(s0).

From DTMC to CTMC statistical model checking. So, given some DTMC and
some time horizon n, the previous method returns for state s, a confidence
interval In = [Ln, Un] and a threshold probability εn such that Pr(µn(s) /∈
In) ≤ εn. In [4], it is also shown how to obtain I∞ = [L∞, U∞] and ε∞ such that
Pr(µ∞(s) /∈ I∞) ≤ ε∞.

Then for a uniformised (by λ) CTMC, using the previous results on its em-
bedded DTMC we obtain a procedure returning a statistical evaluation of µτ (s).
The threshold probability is defined by:

n+∑
n=n−

εn + ε∞ (3)

and the confidence interval I is defined by:

I =

n+∑
n=n−

[cn(1− α− β), cn] · In + [0, αUn− ] + [0, βU∞] (4)

where [a, b] · [a′, b′] = [aa′, bb′], [a, b] + [a′, b′] = [a+ a′, b+ b′].

The correctness of such a procedure is straightforward. However a naive
implementation would require to apply statistical model checking of formulas
aU [0,n]b for all n between n− an n+ and such a number can be large.

A more tricky alternative consists in producing all trajectories until time
horizon n+ and updating the simulation results at the end of a trajectory for all
the intervals [0, n] with n− ≤ n ≤ n+ as follows. If the trajectory has reached s−

then it is an unsuccessful trajectory for all intervals. Otherwise if it has reached
s+ at time τ then for all n ≥ τ it is a successful trajectory and for all n < τ
it is unsuccessful. Doing this way, every trajectory contributes to all evaluation,
and we significantly increase the sample size without increasing computational
cost. The accuracy of the results is improved. However, this requires that the
importance sampling associated with time interval [0, n+] is also appropriate for
the other intervals and in particular with time interval [0, n−].

4.4 Our methodology

Based on the previous developments, we describe a methodology to perform
statistical model checking for an SPN N , using importance sampling to estimate
the tiny probability p = µτ (m0) in several steps, where m0 is the initial marking.
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1. Specify an SPN (N •,m•0) and a reduction function f from Reach(N ,m0) to
Reach(N •,m•0).

2. Fix some uniform rate λ for the uniformisation of the embedded DTMC of
N . Then, given some numerical precisions α and β, determine the lower and
upper bounds n− and n+ and coefficients cn (n− ≤ n ≤ n+) for the Poisson
distribution with parameter λτ (see section 4.3).

3. Numerically compute the distributions {µ•n}0<n≤n+ on the reduced net.

4. Use these distributions to perform importance sampling on the simulation
of the initial net to estimate µu(s) for n− ≤ u ≤ n+ and u = ∞. Weight
and combine the confidence intervals with equation (4) in order to return
the final interval.

The first step requires some understanding of the system to design the appropri-
ately reduced Markov chain. Steps 2 and 3 are standard computations and do
not need additional explanations. Depending on the size of the reachability set
of the reduced model, the fourth step requires a different space-time trade-off to
put off computational abilities as described below.

4.5 Algorithmic considerations

Table 2. Compared complexities

Complexity Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Space mn+ 2m
√
n+ m logn+ 2m

Time
for the Θ(mn+) Θ(mn+) Θ(mn+) 0
precomputation

Additional time
for the 0 Θ(mn+) Θ(mn+ log(n+)) Θ(m(n+)2)
simulation

The easiest way to perform importance sampling is to compute the whole
family of vectors {µ•n}0<n≤n+ before the simulation starts as described in Algo-
rithm 1. When the memory requirement of this algorithm exceeds the resources
of the machine, Algorithm 2 (resp. Algorithm 3) maintains only a subfamily of
size 2

√
n+ (of size log(n+)). Finally, Algorithm 4 computes the appropriate vec-

tor at each step of the simulation. The time and memory consumption of the four
algorithms are described in Table 2 where m is the size of the reachability set of
the reduced net. The space unit is the storage of a float, and the space complex-
ity takes only into account the memory used to store the vectors. All methods
require also to store the transition probability matrix and the simulation state.
The algorithms are fully described in the appendix.
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Algorithm 1

Precomputation(u, µ•0, P
•
0 ) Result: Ls

// List Ls fulfills Ls(i) = µ•i
v ← µ•0
for i = 1 to u do

v ← P •0 v Ls(i)← v

Algorithm 2

Precomputation(u, µ•0, P
•
0 ) Result: Ls,K

// List Ls fulfills Ls(i) = µ•i·l
l← b

√
uc w ← µ•0

for i from 1 to bu
l
cl do

w ← P •0w if i mod l = 0 then
Ls( i

l
)← w

// List K contains µ•bu
l
cl+1, . . . , µ

•
u

for i from bu
l
cl + 1 to u do

w ← P •0w K(i mod l)← w

Stepcomputation(v, l, P •0 ,K, Ls)
// Updates K when needed

if v mod l = 0 then
w ← Ls( v

l
− 1)

for i from ( v
l
− 1)l + 1 to v − 1 do

w ← P •0w K(i mod l)← w

Algorithm 3

Precomputation(u, µ•0, P
•
0 ) Result: Ls

// Ls fulfills Ls(i) = µ•∑k
j=i au,j2

j

k ← blog2(u)c+ 1 v ← µ•0 Ls(k+ 1)← v
for i from k downto 0 do

if au,i = 1 then
for j from 1 to 2i do

w ← P •0w

Ls(i)← w

Stepcomputation(v, l, P •0 , Ls) // Ls is

updated accordingly to v − 1
i0 ← min(i | av,i = 1) w ← Ls(i0 + 1)
Ls(i0)← v
for i from i0 − 1 downto 0 do

for j = 1 to 2i do
w ← P •0w

Ls(i)← w

Algorithm 4

Stepcomputation(u, µ•0, P
•
0 ) Result: v

// Vector v equal to µ•u
v ← µ•0
for i = 1 to u do

v′ ← P •0 v v ← v′

5 Experiments

Confidence interval. In all statistical computations that we have conducted here
we use the importance sampling defined in Proposition 1. Consequently the result
of each trajectory of the simulation is a realisation of a random variable, taking
values in {0} ∪ [µ•u(f(s)),∞[. We have to compute a confidence interval from
theses realisations but there is no approach that is more appropriate than other
ones for this. We select three ways to compute this confidence interval.

1. The more classical way to compute confidence intervals is to suppose that the
distribution is Gaussian; this is asymptotically valid if the variance is finite,
thanks to the central limit theorem. But we cannot estimate the accuracy of
the approximation.

2. Another method is to use a pseudo Chernoff-Hoeffding bound. Whenever the
random variable is bounded, this method is asymptotically valid. In our case
we will use the maximal value observed during the simulation as an upper
bound.

3. The last method consists in recording the minimal and maximal observed
values and returns them as confidence intervals.
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As this random variable, say W , takes its values in {0} ∪ [µ•n+(f(s)),∞[, we
introduce the Bernoulli variable T whose value is 0 when W is 0, and 1 when
W ≥ µ•n+(f(s)) > 0. The same simulation gives us a confidence interval for
E(T ) = Pr(T = 1), say [LT , UT ], and a confidence interval for the conditional
E(W |T = 1), say [L,U ]. As E(W ) = E(W |T = 1) Pr(T = 1), we use [LTL,UTU ]
as a confidence interval for E(W ).

We have analysed three properties, the latter two are inspired by [11]. For all
properties we use a reduced model with a smaller scaling factor. But the scaling
factor is not homogeneously applied over all parts of the model. More details on
the construction of the reduced models are provided later.

All the experiments have been carried out with our tool COSMOS [3] on a
machine with 16 cores running at 2 GHz and 32 GB of memory.

5.1 Maximal peak of the output signal

We start off with a time-bounded reachability property assessing the strength of
the output signal: “What is the probability to reach within 10 time units a state
where the total mass of ERK is doubly phosphorylated?”, yielding the quantity:

p1 = Pr(True U≤10(ERKPP = 3N))

The inner formula is parameterised with N , the scaling factor for the initial
marking. The reduced model that we design for COSMOS uses different scaling
factors for the three levels in the signalling cascade. The first two levels which
are based on Raf and MEK always use a scaling factor of 1, whereas the last
level involving ERK uses a scaling factor of N . The second column of Table 3
shows the reduction factor of the reduced model. The mapping function from
the original model to the reduced one decreases the number of tokens in each
place in a consistent way.

Table 3. Computational complexity related to p1

N COSMOS MARCIE

reducing factor time(s) memory time(s) memory

1 - - - 4 514MB
2 38 20,072 3,811MB 326 801MB
3 558 15,745 15,408MB 43,440 13,776MB
4 4667 40,241 3,593MB Out of Memory: >32GB
5 27353 51,120 19,984MB

We perform experiments with both COSMOS and MARCIE. The time and
memory consumption for increasing values of N are reported in Table 3. For
each value of N we run one million of trajectories with COSMOS. For N = 2
and N = 3, we use the first algorithm which is the fastest, but for N = 4 and
N = 5 we use the second algorithm in order to make the computation fit into the
memory. We observe that the time consumption significantly increases between
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N = 3 and N = 4 when we switch from Algorithm 1 to Algorithm 2. MARCIE

suffers an exponential increasing w.r.t. both time and space resources. When
N = 3, it is slower than COSMOS and it is unable to handle the case N = 4.

Table 4. Numerical values associated with p1

N COSMOS MARCIE

CI Gaussian CI Chernoff CI MinMax Result

1 2.07E-12
2 [3.75E-027,5.88E-026] [3.75E-027,4.54E-025] [3.75E-27,1.57E-23] 8.18E-26
3 [4.34E-042,1.72E-039] [4.34E-042,1.82E-038] [4.43E-42,1.87E-37] 2.56E-39
4 [1.54E-057,8.54E-056] [1.54E-057,1.98E-055] [1.78E-57,7.05E-55] Out of Memory
5 [3.97E-073,2.33E-070] [3.97E-073,7.30E-070] [5.44E-73,2.24E-69]

Table 4 depicts the values returned by the two tools: MARCIE returns a
single value, whereas COSMOS returns three types of confidence intervals with
confidence level set to 0.99. The three confidence intervals correspond to the three
methods for bounding the likelihood of trajectories. We observe that confidence
intervals computed by the Gaussian analysis always underestimate the result, the
ones computed by Chernoff-Hoeffding underestimate it for N = 3, and the larger
ones computed from the minimal and maximal observation always contain the
result computed with MARCIE when it is available. An analysis of the likelihood
is detailed in appendix.
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Figure 4. Observing an exponential dependency

Figure 4 illustrates the dependency of p1 with respect to the scaling factor
N . It appears that the probability p1 depends on N in an exponential way. This
striking phenomenon could be interpreted by biologists.
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5.2 Conditional maximal signal peak

The network structure of each level in the signalling cascade ensures cyclic be-
haviour, i.e. phosphorylated proteins, serving as signal for the next level, can
also be dephosphorylated again, which corresponds to a decrease of the signal
strength. Thus, an intriguing property of the signalling cascade is the probability
of a further increase of the signal strength under the condition that a certain
strength has already been reached. We explore this property for the first level in
the signalling cascade, i.e. RafP, and ask specifically for the probability to reach
its maximal strength: “What is the probability of the concentration of RafP to
continue its increase and reach its maximal strength, when starting in a state
where the concentration is for the first time at least L?”. Please note, this is a
special use case of the general pattern introduced in [11].

p2 = Prπ((RafP ≥ L) U (RafP > L′))

where π is the distribution over states when satisfying for the first time state
formula RafP ≥ L.

This formula is parameterised with the two thresholds L and L′. Observing
that L,L′ ∈ [0, 4N ] for RafP , the results for increasing N and L, with L < L′

and L′ = 4N − 1 are reported in Table 5 (confidence intervals are computed by
Chernoff-Hoeffding method). As before MARCIE cannot handle the case N = 3
but here the bottleneck is the execution time.

At first sight it was unclear how p2 evolves when L increases as L′ remains
fixed. Experiments point out that p2 increases by a least one magnitude order
when L is incremented. This phenomenon could also be interpreted by biologists.

Table 5. Numerical values associated with p2

N L L′ COSMOS MARCIE

confidence interval time result time memory

2 2 7 [2.39e-13 , 1.07e-09] 31 5.55e-10 90 802 MB
2 3 7 [2.18e-10 , 6.92e-08] 110 6.64e-08 136 816 MB
2 4 7 [9.33e-08 , 3.54e-05] 256 3.01e-06 276 798 MB
2 5 7 [1.16e-05 , 6.08e-04] 1000 7.16e-05 759 801 MB
2 6 7 [5.42e-04 , 1.21e-03] 5612 1.27e-03 3180 804 MB

3 5 11 [1.82e-12 , 9.78e-09 ] 459 time > 48 hours
3 6 11 [3.41e-010 , 9.66e-08] 1428
3 7 11 [1.81e-08 , 2.23e-06 ] 7067
3 8 11 [8.72e-07 , 2.71e-06] 4460
3 9 11 [1.42e-06 , 4.59e-05] 4301
3 10 11 [2.69e-04 , 9.34e-04] 6420
4 10 15 [5.12e-09 , 2.75e-08] 8423
4 11 15 [8.23e-08 , 2.97e-07] 7157
4 12 15 [9.84e-07 , 1.86e-06] 18730
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5.3 Signal propagation

To demonstrate that the increases of the signals are temporally ordered w.r.t.
the levels in the signalling cascade, and by this way proving the travelling of the
signals along the levels, we explore the following property: “What is the prob-
ability that, given the initial concentrations of RafP, MEKPP and ERKPP
being zero, the concentration of RafP rises above some level L while the concen-
trations of MEKPP and ERKPP remain at zero, i.e. RafP is the first species to
react?”. While this property has its focus on the beginning of the signalling cas-
cade, it is obvious how to extend the investigation by further properties covering
the entire signalling cascade.

p3 = Pr((MEKPP = 0) ∧ (ERKPP = 0))U(RafP > L))

This formula is parameterised with L for L ∈ [0, 4N ]. The results for increas-
ing N and L = 4N − 1 are given in Table 6. Obviously, the probability of a
further increase for L = 4N is zero. On the one hand as reported in Table 6, the
event is less rare than the other properties and on the other hand, the reduced
model seems less appropriate for importance sampling. We also observed that
as expected the probability decreases with respect to L.

Table 6. Experiments associated with p3

N L COSMOS

confidence interval time
2 5 [ 9.81e-06 , 0.0518 ] 102
2 6 [ 7.8e-05 , 3.16e-04 ] 102
2 7 [5.78e-07 , 9.89e-06 ] 103

3 9 [0 , 2.16e-06] 3963

6 Conclusion

We have studied rare events in signalling cascades with the help of an improved
importance sampling method implemented in COSMOS. As demonstrated by
means of our scalable case study, our method has been able to cope with huge
models that could not be handled neither by numerical computations nor by
standard simulations. In addition, analysis of the experiments has pointed out
interesting dependencies between the scaling parameter and the quantitative
behaviour of the model.

In future work we intend to incorporate other types of quantitative proper-
ties, such as the mean time a signal needs to exceed a certain threshold, the
mean travelling time from the input to the output signal, or the relation be-
tween the variation of the enzymes of two consecutive levels. We also plane to
analyse other biological systems for which the evaluation of tiny probabilities
might be relevant like mutation rates in growing bacterial colonies [9]. Finally,
to improve usability, we aim at developing a methodology based on a structural
analysis of the net to semi-automatically derive an appropriate reduced model
for importance sampling.
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7 Appendix

7.1 Algorithmic considerations

Here, we describe in detail the four algorithms that we can use in order to the
space-time trade-off in the algorithmic part.

We denote by m the number of states of the embedded Markov chain C•
of the reduced net. A simulation takes at most u steps going through states
(sn+ , n+), . . . , (s1, 1), s± where sn+ = s0 and s± ∈ {s+, s−}. In state (sv, v),
we compute the distribution P ′u((sv, v),−) (cf. definition 6), which requires the
values of µ•v(f(s)) and µ•v−1(f(s′)), for each possible target state s′ from sv.

Thanks to equations 1, the vectors {µ•v}0<v≤u may be computed iteratively
one from the other with complexity Θ(mdu). More precisely, we derive from P•,
matrix P•0, a square (substochastic) matrix, indexed by Sab ∪ s+ and defined by
∀s, s′ ∈ Sab:
P•0(s, s′) = P•(s, s′),P•0(s, s+) =

∑
s′′∈Sb P•(s, s′′)

P•0(s+, s+) = 1,P•0(s+, s
′) = 0

Then µ•v = P•0 · µ•v−1 and µ•0 is null except µ•0(s+) = 1. But for large values
of u, the space complexity to store them becomes intractable and the challenge
is to obtain a space-time trade-off. So we propose four methods. The methods
consist of a precomputation stage and a simulation stage. Their difference lies
in the information stored during the first stage and the additional numerical
computations during the second stage. In the precomputation, most methods
compute iteratively the u vectors µ•v = (P •0 )v(µ•0) for v from 1 to u.

1. The first method is the “natural” implementation. It consists in storing all
these vectors during the precomputation stage and then proceeding to the
simulation without any additional numerical computations. The precompu-
tation stage is described in algorithm 4.5 presented in the appendix. The
storage of vectors {µ•v}v≤u is the main memory requirement.

2. Let l(< u) be an integer. In the precomputation stage, the second method
only stores the bul c + 1 vectors µ•τ with τ multiple of l in list Ls and
µ•lbul c+1, . . . , µ

•
u in list K (see the precomputation stage of algorithm 4.5).

During the simulation stage, in a state (s, τ), with τ = ml, the vector µ•τ−1
is present neither in Ls nor in K. So the method uses the vector µ•l(m−1)
stored in Ls to compute iteratively all vectors µ•l(m−1)+i = P •i(µ•l(m−1)) for

i from 1 to l − 1 and store them in K (see the step computation stage of
algorithm 4.5). Then it proceeds to l consecutive steps of simulation without
anymore computations. We choose l close to

√
u in order to minimize the

space complexity of such a factorization of steps.
3. Let k = blog2(u)c + 1. In the precomputation stage, the third method only

stores k + 1 vectors in Ls. More precisely, initially using the binary de-
composition of u (u =

∑k
i=0 au,i2

i), the list Ls of k + 1 vectors consists of
wi,v = µ•∑k

j=i av,j2
j , for all 1 ≤ i ≤ k+1 (see the precomputation step of algo-

rithm 4.5). During the simulation stage in a state (s, v), with the binary de-

composition of v (v =
∑k
i=0 av,i2

i), the list Ls consists of wi,v = µ•∑k
j=i av,j2

j ,
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for all 1 ≤ i ≤ k + 1. Observe that the first vector w1,v is equal to µ•v. We
obtain µ•v−1 by updating Ls according to v−1. Let us describe the updating
of the list performed by the stepcomputation of algorithm 4.5. Let i0 be the
smallest index such that av,i0 = 1. Then for i > i0, av−1,i = av,i, av−1,i0 = 0
and for i < i0, av−1,i = 1. The new list Ls is then obtained as follows. For
i > i0 wi,v−1 = wi,v, wi0,v−1 = wi0−1,v. Then the vectors for i0 < i, the
vectors wi,v−1 are stored along iterated 2i0−1 − 1 matrix-vector products

starting from vector wi0,v−1: w(j, v − 1) = P •0
2jw(j + 1, v − 1).

The computation associated with v requires 1 + 2 + · · · + 2i0−1 products
matrix-vector , i.e. Θ(md2i0). Noting that the bit i is reset at most m2−i

times, the complexity of the whole computation is
∑k
i=1 2k−iΘ(md2i) =

Θ(mdn+ log(n+)).
4. The fourth method naively consists in computing vector µ•v from the initial

vector at each step. In this method we only need to store two copies of the
vector. The required amount of space is the same as the one required by
a numerical model checker on the same system. This method in not really
practical but it give a lower bound on the required memory.

7.2 Experimental analysis of the likelihood

We describe here some technical reading of the simulation results obtained for
property p1 (from subsection 5.1). To analyse these results, we have first to
study the distribution of the random variable W(s,n+) which is the likelihood
of the trajectories. Proposition 1 guarantees that values of W(s,n+) lay in {0} ∪
[µ•n+(f(s)),∞[. We observe for each trajectory the value of its likelihood at the
end of the simulation. Figure 5 shows an histogram of the distribution of the
strictly positive values of W(s,n+) as well as their impact on the mean values
of W(s,n+). We simulate the system with N = 2 and for the formula p1 with
a discrete horizon of 615 which is the right truncation point return by the Fox
Glynn algorithm for this property. This figure is in logarithmic scale for abscissa
and distribution of impact. The distribution of trajectories is in linear scale
and has been scaled to fit in the same figure. The total number of trajectories is
69000, 49001 of them end with the 0 value. We can see from this figure that most
of the trajectories end with a value close to 2.10−35, and that a few trajectories
have a value close to 10−32, but the contributions to the mean of the two set
of trajectories are similar. This means that an estimator of the mean value of
W(s,u) will underestimate the true expected value of W(s,u).
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Figure 5. Distribution of trajectories and their contribution


