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Abstract

The task of diagnosis consists in detecting, without ambiguity, occurrence of
faults in a partially observed system. Depending on the degree of observability,
a discrete event system may be diagnosable or not. Active diagnosis aims at con-
trolling the system in order to make it diagnosable. Past research has proposed
solutions for the active-diagnosis problem, but their complexity remains to be
improved. In this paper, we solve the active-diagnosability decision problem
and the active-diagnoser synthesis problem, proving that (1) our procedures are
optimal with respect to computational complexity, and (2) the memory required
for the active diagnoser produced by the synthesis is minimal. We then focus
on the delay between the occurrence of a fault and its detection by the diag-
noser. We construct a memory-optimal diagnoser whose delay is at most twice
the minimal delay, whereas the memory required for a diagnoser with optimal
delay may be highly greater. We also provide a solution for parametrized active
diagnosis, where we automatically construct, given a user-specified delay, the
most permissive controller that respects this delay.

Keywords: Partial observation, diagnosis, game and automata theory,
controller synthesis

1. Introduction

In monitoring discrete event systems, one of the central tasks is that of di-
agnosis: Given a finite labeled transition system A (also called “plant”) whose
events are partially observable, our task is to decide – based on the stream of
observation labels – whether or not particular unobservable events, called faults,
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pean Union Seventh Framework Programme FP7/2007-2013 under grant agreement 257462
HYCON2 NOE.

IIA shorter version of this paper was previously published as [1]. With respect to that
version, this paper not only includes all proofs, but also includes new results on parametrized
active diagnosis (Section 5) and shows that Theorems 4 and 5 also hold for fixed-size alphabets.
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have occurred. More precisely, the system is considered diagnosable iff there ex-
ists some k ≥ 1 such that at most k (observed) events after the occurrence of
a fault, the observation is sufficient to detect a fault occurrence with certainty,
i.e. all possible system runs compatible with the partial observation collected so
far are faulty. As the available observations may be insufficient, diagnosability
verification has received considerable attention since the seminal paper by Sam-
path et al [2]; see also [3, 4]. These works construct a dedicated deterministic
version of the original plant, a so-called diagnoser such that the absence of a
particular kind of cycles (called indeterminate cycles) in this auxiliary automa-
ton is equivalent to diagnosability. Via a different approach called twin-plant
construction the diagnosability problem is shown to be solvable in polynomial
time [5].

On the other hand, once a system has been shown to be undiagnosable - in
a sense that we will formalize later - several actions can follow, such as com-
plete redesign of the system, or adding further sensors to enhance observability.
Sampath et al [6] have initiated a different approach, that of active diagnosis: if
the given plant A is not diagnosable, synthesize a partial-observation controller
C that, while letting the system live, forces the behavior of A to stay within
a diagnosable subset of its behaviors (or, equivalently, such that the controlled
plant AC is diagnosable). The pair consisting of the controller and the diagnoser
is called an active diagnoser. Later, Chanthery and Pencolé [7] have proposed
a planning-based approach via a twin plant construction.

In this paper, we follow the approach of Sampath et al [6], but via a different
method based on ω-automata and game theory. This allows us to improve the
construction of diagnosers and moreover establish complexity results, which
were not treated in previous works:

1. We build a deterministic Büchi automaton that accepts the sublanguage
of infinite unambiguous observable sequences, i.e. those that are either
(i) only triggered by correct runs or (ii) only triggered by faulty runs. Its
size is upper-bounded by 2O(n) where n is the number of states, which is
better than all previous constructions. In addition we show the optimality
of our construction proving that there is a family of systems for which any
corresponding deterministic Büchi automaton must have a size in 2Ω(n).

2. Based on these Büchi automata, we design a Büchi game; a winning strat-
egy for it yields an active diagnoser for the system, and vice versa. We
thus solve the active diagnosis problem by deciding whether there exists a
winning strategy, and the synthesis problem by giving an active diagnoser
associated with a positional strategy. The size of the active diagnoser
is singly exponential with respect to the size of the system, while that
of [6] is doubly exponential. We also prove that the decision problem
is EXPTIME-complete and that the synthesis procedure is optimal with
respect to the number of states of the active diagnoser (still in 2O(n)).

3. We then study the delay between a fault and its detection by an active
diagnoser. We first present a family of systems for which a minimal-
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delay diagnoser must have 2Ω(n log(n)) states. However, refining our earlier
construction yields an active diagnoser with size 2O(n), whose delay is
at most twice the minimal possible delay called the intrinsic delay. In
addition, we sketch the construction of a minimal-delay active diagnoser
with at most 2O(n2) states.

4. The aforementioned work allows to minimize the delay between the occur-
rence of a fault and its detection. However, in designing a controller there
is a tradeoff to be made between minimizing the detection delay and the
permissiveness of the controller – the smaller the delay, the more restrictive
the controller needs to be. We have therefore developed a parametrized
version of active diagnosis where the parameter d is a delay. Our algorithm
builds a parametrized controller with delay at most 2d + 1 that is more
or equally permissive than any controller with delay d. Since controllers
with same delay can be incomparable with respect to permissiveness, such
a controller achieves a good tradeoff.

In Section 2, we recall notions related to diagnosis and active diagnosis. In
Section 3, we establish the lower bounds related to the computational complex-
ity, the memory requirements and the intrinsic delay. Section 4.1 presents the
construction of the deterministic Büchi automaton. Then in Section 4.2, we
solve the decision and the synthesis problems for active diagnosis. After that,
Section 4.3 refines the synthesis problem with respect to the delay. Section 5
designs a parametrized version of active diagnoser. Section 6 concludes and
gives some perspectives of this work.

2. The active diagnosis problem

2.1. Labeled transition systems

When dealing with discrete event systems (DES) diagnosis, systems are of-
ten modeled using labeled transition systems (LTS). So we define LTS, their
properties and languages.

Definition 1. A labeled transition system is a tuple A = 〈Q, q0,Σ, T 〉 where:

• Q is a set of states with q0 ∈ Q the initial state;

• Σ is a finite set of events;

• T ⊆ Q× Σ×Q is the set of transitions.

We note q
a−→ q′ for (q, a, q′) ∈ T . A run over the word σ = a1a2 . . . ∈ Σω is

a sequence of states (qi)i≥0 such that qi
ai+1−−−→ qi+1 for all i ≥ 0, and we write

q0
σ
=⇒ if such a run exists. A finite run over w ∈ Σ∗ is defined analogously, and

we write q
w
=⇒ q′ if such a run ends at state q′. A state q is reachable if there

exists a run q0
w
=⇒ q for some w.
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Definition 2 (Languages of an LTS). Let A = 〈Q, q0,Σ, T 〉 be an LTS. The
finite language L∗(A) ⊆ Σ∗ of A and the infinite language Lω(A) ⊆ Σω of A
are defined by:

L∗(A) = {w ∈ Σ∗ | ∃q : q0
w
=⇒ q } Lω(A) = {σ ∈ Σω | q0

σ
=⇒}

An LTS A is live if for any reachable state there exists a transition outgoing
from that state. An LTS A is deterministic if for every pair q ∈ Q, a ∈ Σ there
is at most one q′ such that q

a−→ q′. For a deterministic automaton we write
T (q, a) = q′ if q

a−→ q′.

2.2. Observations

In order to formalize problems related to diagnosis, we partition Σ into two
disjoint sets Σo and Σuo, the sets of observable and of unobservable events,
respectively. Moreover, we distinguish a special fault event f ∈ Σuo. Let σ be
a finite word; its length is denoted |σ|. For Σ′ ⊆ Σ, define PΣ′(σ) inductively
by: PΣ′(ε) = ε; for a ∈ Σ′, PΣ′(σa) = PΣ′(σ)a; and PΣ′(σa) = PΣ′(σ) for
a /∈ Σ′. Write |σ|Σ′ for |PΣ′(σ)|, and for a ∈ Σ, write |σ|a for |σ|{a}. When
σ is an infinite word, its projection is the limit of the projections of its finite
prefixes. This projection can be either finite or infinite. As usual the projection
is extended to languages. PΣo will be more simply denoted by P.

An LTS A is convergent if Lω(A) ∩ Σ∗Σωuo = ∅ (i.e. there is no infinite
sequence of unobservable events from any reachable state). When A is conver-
gent, then for all σ ∈ Lω(A), one has P(σ) ∈ Σωo . In this paper, we shall assume
that the system under diagnosis is live and convergent.

q2q0 q1

a, b b c

f a

Figure 1: An LTS.

Example 1. Figure 1 shows a live and convergent LTS with Σo = {a, b, c} and
Σuo = {f}.

2.3. Diagnosability

A finite (resp. infinite) sequence σ is correct if it belongs to (Σ\{f})∗ (resp.
(Σ \ {f})ω). Otherwise σ is called faulty. We shall introduce several notions
related to the fact that an observation sequence may be the projection of both
a correct and a faulty sequence:

Definition 3 (ambiguous and surely faulty sequence). Let A be an LTS,
σ1, σ2 ∈ Lω(A) be two sequences and σ ∈ Σωo be a sequence of observations such
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that:
(1) P(σ1) = P(σ2) = σ, (2) σ1 is correct and (3) σ2 is faulty.

Then σ is called ambiguous and the pair (σ1, σ2) is a witness for the ambiguity
of σ. Finite ambiguous sequences are defined analogously.
A sequence σ′ ∈ P(L∗(A)) is surely faulty iff P−1(σ′) ∩ L∗(A) ⊆ Σ∗fΣ∗.

Definition 4 (Diagnosability). Let k ∈ N. An LTS A is k-diagnosable if:

∀σ = σ′fσ′′ ∈ L∗(A) |σ′′|Σo
≥ k ⇒ P(σ) is a surely faulty sequence,

Furthermore, A is diagnosable if there exists a k such that A is k-diagnosable.

Our definition of diagnosability is a slight variation of the one given in [2].
Indeed the number k above is related to observable events while in former works,
it is related to any kind of events. However, for finite-state convergent systems,
which are addressed by both works, the definitions of diagnosability coincide
(except for the precise value of k).

Example 2. The LTS of Figure 1 is not diagnosable since the correct infinite
trace bω and the faulty infinite trace fbω have the same projection.

We remark that the setting we present here only allows to treat simple fault
patterns with one type of fault, while other work on diagnosis has considered
more complex fault patterns, or multiple fault types. We discuss this issue in
Section 6.

2.4. Active diagnosability

We suppose that Σo is partitioned into subsets Σc ⊆ Σo of controllable and
Σuc = Σo\Σc of uncontrollable actions. Intuitively, a controller may forbid a
subset of the controllable actions based on the observations made so far, thereby
restricting the behaviour of A.

Definition 5 (Controller). Let A be an LTS. A controller for A is a partial
mapping cont : Σ∗o → 2Σ that fulfills the following (inductive) requirement:

• cont(ε) is defined and contains Σuc ∪ Σuo;

• for all σ such that cont(σ) is defined, if a ∈ Σo ∩ cont(σ) and σa ∈
P(L∗(A)) then cont(σa) is defined and contains Σuc ∪ Σuo.

Definition 6 (Controlled LTS). Let A be an LTS and cont be a controller.
The controlled LTS Acont = 〈Qcont , q0cont ,Σ, Tcont〉 is defined by:

• Qcont is the smallest subset of Σ∗o ×Q such that

1. (ε, q0) ∈ Qcont ;

2. (σ, q) ∈ Qcont ∧ a ∈ cont(σ) ∧ q a−→ q′ implies (P(σa), q′) ∈ Qcont .

• q0cont = (ε, q0)
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• ((σ, q), a, (σ′, q′)) ∈ Tcont iff q
a−→ q′ ∧ a ∈ cont(σ) ∧ σ′ = P(σa)

In the diagnosis framework, the goal of our controller is to make the system
diagnosable, and to perfom diagnosis. However, one requires that the control
cannot introduce deadlocks.

Definition 7 (Pilot and Active Diagnoser). Let A be an LTS. We call h =
〈cont , diag〉 a pilot for A if cont is a controller and diag is a mapping from
P(L∗(Acont)) to {⊥,>}. Moreover, h is called an active diagnoser if:

1. Acont is live;

2. P(Lω(Acont)) does not contain any ambiguous sequence;

3. for all σ ∈ P(L∗(Acont)), diag(σ) = > if and only if σ is a surely faulty
sequence.

Moreover, we say that h is a k-active diagnoser, for k ≥ 1, if for all σ =
σ′fσ′′ ∈ L∗(Acont) with |σ′′|Σo ≥ k, diag(P(σ)) = >; in other words, every
fault is diagnosed within at most k observations. The minimal value k such
that h is a k-active diagnoser is called the delay of h. We call A (k-)actively
diagnosable if a (k-)active diagnoser exists, and the minimal such k the intrinsic
delay of A.

Example 3. In the LTS of Figure 1, assume that Σc = {a, b}. Let hn =
〈contn, diag〉, with n ≥ 1, be the pilot defined by:

• contn(σbn) = {a, c, f} for σ ∈ Σ∗c and contn(σ) = Σ otherwise;

• diag(σ) = > iff σ ∈ Σ∗ocΣ
∗
o.

Then hn is an active diagnoser with delay n+ 2.

Notice that an active diagnoser does not necessarily have a finite delay. For
instance, in Figure 1, there is an active diagnoser that admits the sequence
bab2ab3a · · · and is not a k-active diagnoser for any k. However, we will see that
if A is actively diagnosable, there does exist a k-active diagnoser (for some k).
We come back to this point in Section 4.3.

We are now in a position to formally state the relevant problems for active
diagnosis. Let A be a live and convergent LTS with finitely many states. We
are interested in:

• the active diagnosis decision problem, i.e. decide whether A is actively
diagnosable;

• the synthesis problem, i.e. decide whether A is actively diagnosable and in
the positive case build an active diagnoser.

• the parametrized synthesis problem, i.e. decide whether A is actively diag-
nosable and in the positive case build an active diagnoser whose delay is
a user-specified parameter.
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Σ Σ\{b},⊥

Figure 2: A state-based pilot.

To implement an active diagnoser, it must be finitely representable; for this,
we introduce the notion of state-based pilot. A state-based pilot is a pilot whose
memory is finite and thus can be represented by a deterministic LTS. Depending
on the current state, (1) it may or not announce a fault, (2) it allows a subset
of events including the uncontrollable ones, and (3) the observable events that
are allowed label the outgoing edges from the state.

Definition 8 (state-based pilot). A state-based pilot C = 〈B, contC , diagC〉
consists of a deterministic LTS B = 〈Qc, qc0,Σo, T c〉 and labellings contC , diagC :
Qc → 2Σ × {⊥,>}, such that for all q ∈ Qc,

(1) Σuc ∪ Σuo ⊆ contC(q), and

(2) ∃q a−→ q′ iff a ∈ Σo ∩ contC(q).

The pilot hC = 〈cont , diag〉 associated with C is specified as follows: cont is

defined for σ iff there exists a (unique) q such that qc0
σ
=⇒ q. In this case,

cont(σ) = contC(q) and diag(σ) = diagC(q).

By extension, we will say that C is a (k-)active diagnoser for some LTS if hC is.

Example 4. Figure 2 shows a state-based pilot for the LTS of Figure 1. Ob-
serve that b is disabled in the rightmost state in order to implement the active
diagnoser h1.

3. Lower bounds

We first establish that the active diagnosis decision problem is EXPTIME-
hard. The proof relies on a reduction from safety games with imperfect infor-
mation [8].

Theorem 1 (hardness). The active diagnosis decision problem is EXPTIME-
hard.

Proof: A tuple G = 〈L, l0,Σ,∆, O, F, obs〉 is called a safety game with im-
perfect information, where:

• L is a finite set of locations with initial location l0 ∈ L;
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(a) (b)

a

b

ab

l3

l2l1
o p

a b

l2l1

l3

〈l1, a〉

〈l2, b〉

〈l2, a〉〈l1, b〉

⊥

b a

a
b

z
u

f

q

o p

p

q

o

a, b

q

Figure 3: (a) A safety game with imperfect information; Control must avoid observation q;
(b) the corresponding active-diagnosis problem constructed by Theorem 1.

• Σ is a finite alphabet;

• ∆ ⊆ L×Σ×L is the transition relation such that for all l ∈ L and a ∈ Σ
there exists at least one l′ with 〈l, a, l′〉 ∈ ∆;

• O is a finite set of observations, where F ⊆ O are the final observations;

• obs : L 7→ O is the observation mapping.

G is a turn-based game played by two players Control and Environment. It
starts in location l0 with Control to play. In the first round, Control chooses a
letter a0 in Σ, and then Environment chooses a location l1 such that 〈l0, a0, l1〉 ∈
∆. Control only observes o1 = obs(l1). The next rounds are played similarly.
Control wins if for all i, oi /∈ F .

Figure 3 (a) shows an example of a game with alphabet Σ = {a, b} and
observations O = {o,p,q}, annotated next to the locations, where q ∈ F is the
only final observation. Control must therefore prevent the system from entering
location l3. A strategy for doing so is to choose a in the beginning or after seeing
o and b after seeing p. (Notice that in this example, all states have different
observations, so that Control effectively has perfect information. However, the
example illustrates all aspects of the construction.)

The problem of existence of a winning strategy for Control is EXPTIME-
complete [8]. We now describe the reduction of this problem to an active-
diagnosis decision problem with LTS A defined as follows.

• Q, the set of states, is defined by Q = L] ((L \ obs−1(F ))×Σ)]{⊥} and
q0 = l0.

• The alphabet Σ′ = Σ ] O ] {u, f, z}. The unobservable events are u and
f and the (observable) uncontrollable events are O ] {z}.
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• T , the transition relation, is defined as follows.

1. For all l ∈ L \ obs−1(F ) and a ∈ Σ, 〈l, a, 〈l, a〉〉 ∈ T .

2. For all l ∈ L \ obs−1(F ), a ∈ Σ and l′ ∈ L, 〈〈l, a〉, obs(l′), l′〉 ∈ T if
〈l, a, l′〉 ∈ ∆.

3. For all l ∈ obs−1(F ), 〈l, u,⊥〉 and 〈l, f,⊥〉 belong to T .

4. 〈⊥, z,⊥〉 ∈ T .

From the construction of A, a sequence is ambiguous if and only if it contains
an occurrence of z, which is preceded by either u or f . Thus a pilot is an active
diagnoser if and only if it avoids states obs−1(F ). In addition, such a pilot
only “controls” the subset of states L \ obs−1(F ) and due to the assumptions
on G, it can safely restrict the allowed events to a single one. Furthermore
the information available to the pilot is exactly that of Control, i.e. the letters
chosen by Control himself and the observations due to the states chosen by
Environment. Therefore, a winning strategy for Control in G provides an active
diagnoser for A and vice versa. Figure 3 (b) shows the LTS constructed from
the safety game in Figure 3 (a). �

The following theorems focus on the memory required for synthesis prob-
lems related to active diagnosis. We start with the language of unambiguous
sequences of an LTS; as we shall see, that language can be accepted by a Büchi
automaton.

Definition 9 (Büchi automaton). A Büchi automaton over Σ is a tuple B =
〈B′, F 〉, where B′ = 〈S, s0,Σ, δ〉 is an LTS such that S is finite, and F ⊆ S an
acceptance condition. A run (qi)i≥0 is accepting if qi ∈ F for infinitely many
values of i. The language L(B) consists of all words in Lω(B′) for which there
exists an accepting run. A Büchi automaton is called deterministic (live) if its
underlying LTS is.

Theorem 2 (lower bound for determinization). There exists a family of
LTS (An)n≥1 with the size of An in O(n) such that any deterministic Büchi
automaton recognizing the unambiguous sequences of An has at least 2n states.

Proof: The family of LTS (An)n≥1 is depicted in Figure 4, where Σo =
{a, b, c, d}, Σc = {c, d}, and the initial state is q0. Intuitively, during the n first
steps a fault can occur leading to the upper (resp. lower) “branch” of the LTS
when followed by a (resp. b).

Formally, let σ = w1w2ya
ω ∈ Σ∗o be a sequence of observations, where

w1w2 ∈ {a, b}∗, 1 ≤ |w1| ≤ n, |w2| = n − 1, y ∈ {c, d}. Let x1 · · ·x|w1| be the
letters of w1. There are two possible sequences that have triggered σ′ = w1w2y:
the correct sequence σ′ itself and the faulty sequence x1 · · ·x|w1|−1fx|w1|w2y.
If x|w1| = a, before the occurrence of y, the current state is qn in the correct
sequence and ln in the faulty sequence. So if y = d the two sequences will lead
to the same state qn+1 while if y = c one sequence will lead to ln+1 and the
other one to qn+1 and they will be discriminated by the next observation. The

9



a, b

a, b

a, b

a, b c

c, d

d

d

c

qn

rn

ln ln+1 b

qn+1 a

rn+1 b

a, b a, b a, b

a, b a, b

a, ba, ba

b

f

f

f

f

ff

f f

q0 q1 q2 qn−1

r0 r1 r2 rn−1

l0 l1 l2 ln−1
a, b

a, b
· · ·

· · ·

· · ·

Figure 4: An LTS An with Σo = {a, b, c, d}, Σc = {c, d} used in Theorem 2.

case x|w1| = b is symmetrical. So σ is ambiguous iff x|w1| = a and y = d or
x|w1| = b and y = c.
Thus any automaton that distinguishes ambiguous and unambiguous sequences
must remember the first n observations, which requires at least 2n states. �

Observe that the proof of Theorem 2 is independent of the acceptance con-
ditions; thus, the lower bound of 2n remains valid even for more powerful ac-
ceptance conditions like parity, Rabin, Streett, or Muller.

With an appropriate choice of controllable events, the family from Figure 4
also provides a lower bound for a state-based active diagnoser.

Theorem 3 (lower bound for pilots). There exists a family (An)n≥1 of ac-
tively diagnosable LTS with the size of An in O(n) such that any state-based
active diagnoser for An has at least 2n states.

Γ,∆ \ {bn}

c

b2

f

a2

· · ·
Γ Γ Γ Γ

∆p1 p2 pn r

q1 q2 Γ,∆ \ {b2} qn

s

f

b1 bn

a1 an

f

· · ·

∆ = {b1, . . . , bn}

Γ = {a1, . . . , an}

Γ,∆ \ {b1}

Figure 5: An LTS An with Σo = Γ ∪∆ ∪ {c}, Σc = B, where minimizing the delay requires
an active diagnoser with at least n! states.

10



Proof: The family is the same as in Theorem 2. The LTS An, shown in
Figure 4, is actively diagnosable. However assume that one observes a word
σ = a1 . . . am ∈ {a, b}∗ such that n ≤ m ≤ 2n − 1. Then when am−n+1 = a,
A may be in either qn or ln, and when am−n+1 = b, A may be in either qn or
rn. In the former case the controller must forbid d while in the latter it must
forbid c. In addition it cannot forbid both c and d since the controlled system
would then have dead state. This implies that a corresponding state-based pilot
C must be in two different states after seeing two different words from {a, b}n,
therefore it must have at least 2n states. �

We next come to the question how expensive it is to build an active diagnoser
that realizes the minimal delay possible. It turns out that this requires an even
larger controller.

Theorem 4 (minimal-delay diagnoser). There exists a family (An)n≥1 of
f(n)-actively diagnosable LTS (for some function f) of size O(n) such that any
state-based f(n)-active diagnoser C for An has at least n! states.

Proof: We first exhibit a family of examples (An)n≥1, for which the proof
is easy to understand. However, in that family, An has an alphabet of size O(n)
and in fact O(n2) transitions. We then show that the principle also works when
the alphabet size does not depend on n, i.e. we provide a family (A′n)n≥1 where
A′n is truly of size O(n).

As for the first example, consider the LTS An in Figure 5, where Σ =
Γ ∪ ∆ ∪ {c, f}, with Γ := {a1, . . . , an} and ∆ = {b1, . . . , bn}. In the following
proof, we also use the abbreviation ∆i := ∆ \ {bi}. As usual, Σuo = {f} and
Σo = Σ \ Σuo, and moreover, the set of controllable actions is Σc = ∆.

Intuitively, in this example, the first n observations can be uncontrollable
and can be used by the environment to encode a permutation π. In order
to minimize the maximal delay between the occurrence of any fault and its
detection, the controller must remember π and repeat it, in a sense made more
precise below.

For i = 1, . . . , n, when the system is in pi, the system can do any action from
Γ or commit a fault, do aj , and go to qj , for any j = 1, . . . , n. Suppose that in
the first n steps, one observes σ = aπ(1) · · · aπ(n) ∈ Γn, where π is a bijection
on {1, . . . , n} (i.e., a permutation). Then the system could be either in state r,
or for any i = 1, . . . , n, a fault may have occurred immediately before aπ(i), in
which case the system has been in state qi for n+ 1− π−1(i) steps.

After the first n observations, if we make another observation from Γ, then
we know immediately that the system is in one of the states qi, and we can
diagnose a fault. However, since the system could be in state r, any active
diagnoser must admit at least one action from ∆ to leave the system alive. So
let us assume from now on that the system chooses an action from ∆ whenever
possible. Since the actions from ∆ are available when the system is either in r
or in any of the qi, the controller must exclude the latter possibility.

Now, if the system is in state qi, then blocking ∆i will provoke a move
to s. Thus, for any permutation π′, after the controller blocks the action sets
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∆π′(1), . . . ,∆π′(n) in that order, the system is guaranteed to be in either r or
s. Moreover, if π′ = π, then then any fault will be discovered after at most
f(n) = n + 2 observations, and if π′ 6= π, it is easy to see that the controller
cannot guarantee a delay of n + 2 (e.g., when i is the smallest value such that
π′(i) 6= π(i) and the fault occurred before the i-th observation). It is equally
easy to see that n+ 2 is also a lower bound for the intrinsic delay of An, since
initially the controller cannot prevent a sequence of n consecutive actions from
the uncontrollable set Γ, and after this it takes at least two more steps to force
the system to produce a c if a fault has previously occurred.

We remark that when the initial observations described by π do not corre-
spond to a permutation, then the job of the controller becomes easier. Indeed
it only has to memorize the earliest occurrence of any ai for discarding the
possibility of a fault leading to qi as soon as possible.

To conclude, in order to enforce the correct sequence of actions, any state-
based pilot must remember π, requiring at least n! states.

The example in Figure 5 has an alphabet of size O(n). We now show that
the result of Theorem 4 holds even when the size of the alphabet is fixed.
Consider the system A′n shown in Figure 6, a variant of Figure 5 where the
observable alphabet is {a, b, c, 0, 1, 0̄, 1̄}, with f the only invisible action and
0, 1, 0̄, 1̄ controllable. Notice that the size of A′n is in O(n), like that of An.

The system of Figure 6 works mostly like the one of Figure 5, but with
indices from 1, . . . , n encoded in unary. For i = 1, . . . , n, let code(ai) = 1i0n−ia
and code(bi) = 1̄i0̄n−ib. Moreover, for the sake of completeness code(c) = c.
The reader can convince himself that, modulo this encoding, A′ “simulates” A
in the following sense: Let s′, s′′ ∈ {p1, . . . , pn, q1, . . . , qn, r, s} be two states of

An and x be an observable action in An. Then s′
x−→ s′′ (respectively s′

fx
=⇒ s′′)

in An if and only if s′
code(x)
====⇒ s′′ (respectively s′

f code(x)
=====⇒ s′′) in A′n.

Notice that, among others, the letters 0, 1 are controllable. This is despite
them being used to encode elements of Γ, which are uncontrollable in An. As
we shall see, this is actually necessary to prevent A′n from becoming undiagnos-
able. Other than this, we shall see that the controller draws no profit from the
controllability of those letters, compared with An: neither can it prevent A′n to
choose a permutation as in An, nor can it enforce any sequence that does not
correspond to an encoding of Γ ∪∆ ∪ {c}:
• Suppose that the system is (potentially) in states pi and qj (having seen

code(aj) before). Because of pi, the controller must now admit 1, and if
1 occurs, the system is potentially in states t1 or t′1. Thus for the next
n− 1 steps, the controller cannot forbid 0 and it can forbid a 1 only after
the occurrence of a 0. So the environment can therefore play code(ai), for
any i = 1, . . . , n. Only when the system has potentially reached tn or t′n,
a controller can forbid both 0, 1, thus forcing the system to make either c
(in case it really is in tn or t′n), or a. Indeed, unless the controller enforces
this, the system may loop indefinitely between pi and pi+1 (without fault
occurrence) as well as in qj (after fault occurrence), which is undesirable
for achieving diagnosis.
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• Suppose that the system is potentially in state r. Then a similar mech-
anism (using the states from r1 to rn, r

′
n) ensures that the system must

admit n successive observations of 1̄ and 0̄, followed by a b, encoding an
element of ∆.

This observation, together with the ‘simulation’ between An and A′n, means
that the controller once again needs to remember an n-permutation π. Then,
the controller achieves a delay corresponding to the length of n+ 1 encodings of
symbols from A∪B plus one occurrence of c, that is (n+ 1)2 + 1 = n2 + 2n+ 2,
which is again the minimum possible. �
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Figure 6: A variant of Figure 5 with fixed alphabet size.

While the previous examples exhibit an intrinsic delay linear or quadratic
w.r.t. the size of the LTS, the intrinsic delay may be exponential in the worst
case (and no more as shown in the next section).

13



qs

· · ·

n

Γ1 Γ0

0

Σc

2

1Σ2

Σ1Σ3

Σo = {b, 0, . . . , n}

Σc = {0, . . . , n}

Σi := {i, . . . , n}

Γi := {0, . . . , i}
Γn−2

n− 1
Σn

p

r0r1r2rn−1

fnn n
b

Γn−1

t

Figure 7: A system whose delay is 2n + 3.

Theorem 5 (lower bound for intrinsic delay). There exists a family (An)n≥1

of actively diagnosable LTS of size O(n) such that the intrinsic delay of An is
at least 2n.

Proof: As in the proof of Theorem 4, we first present an easy-to-understand
example where An has an alphabet of size O(n) and O(n2) transitions. We then
prove that the result holds as stated, by exhibiting another family with O(n)
states and fixed alphabet.

Consider the LTS An shown in Figure 7. Its alphabet consists of the observ-
able actions b and 0 to n and the unobservable fault f , which may only happen
in the beginning. The actions 0 to n are controllable, and b shall serve only to
reveal the initial fault. Notice that the size of the alphabet of An depends on
n; we shall later show that the result even holds for a fixed alphabet.

In this automaton, as in the one of Figure 8, we sometimes label transition
with multiple letters; this is merely for clarity, and these transitions could be
replaced by a sequence of transitions with intermediate states without changing
the fact that An has O(n) states.

We claim that An is actively diagnosable with an intrinsic delay in Ω(2n).
Indeed, suppose that the two initial observations, which a controller cannot
prevent to leave the system alive, are nn. After these, the system may be
in the state q (after committing a fault), in p, or in any state from the set
R := {r0, . . . , rn−1} (without fault). Since the system can loop in q with all
actions from 0 to n−1, the goal of the controller must be to force an occurrence
of n (by prohibiting actions 0 to n − 1). This would cause the system to leave
state q (if indeed it is there) and play a b, which would reveal the fault. However,
the actions available to the states in R are limited, so in order to respect the
liveness criterion, the controller must first try to exclude the possibility of the
system being in any state from R before forcing n. Then again, this takes at
least 2n − 1 steps, as we explain now.

14



For an observation sequence σ, let us define as U(σ) (uncertainty set) the
subset of R to which σ can lead. Moreover, for R′ ⊆ R, define the value
v(R′) :=

∑
ri∈R′ 2i. Thus, v(U(nn)) = 2n − 1, and the controller must enforce

a suffix σ′ such that v(U(nnσ′)) = 0. One can now see that the controller can
decrease the value v by at most one per observable action, where the uncertainty
set behaves like a binary counter. For instance, if U(σ) contains r0, then the
controller must allow 0, the only action available to r0. If the system then
indeed plays 0, then U(σ0) = U(σ) \ {r0} since all other states in R (and p, q)
can loop with 0, so v(U(σ0)) = v(U(σ)) − 1. More generally, if i is the least
value such that ri ∈ U(σ), then the controller must admit at least one of the
actions from 0 to i. However, the actions from 0 to i− 1 will cause all states in
U(σ) to loop, so the controller gains nothing from allowing these actions, and it
will allow only i (and optionally higher values). If the system then plays the i
action, this will remove ri from the uncertainty set but add all the states from
r0 to ri−1 (from p). Thus, U(σi) = U(σ) \ {ri} ∪ {r0, . . . , ri−1}, and again the
value has decreased by exactly one.

This concludes the proof forAn; the intrinsic delay is precisely 2n+3 since the
shortest sequence enforceable by a controller that reveals the initial occurrence
of the fault is nnσnb, where σ is a sequence of length 2n − 1.

We now demonstrate that the result still holds even when the alphabet is
of a fixed size, i.e. independent of n. Consider the automaton A′n in Figure 8,
a version of Figure 7 in which the values 0 to n are encoded in unary: for
i ∈ {0, . . . , n}, let code(i) = 1i0n−ia the action sequence in Figure 8 that corre-
sponds to the action i in Figure 7. Again, we allow multiple letters on transitions
for the sake of clarity, but the automaton still has O(n) states even without this
trick.
A′n allows loops starting and ending in q that read exactly the sequences

code(i), for i = 0, . . . , n− 1. It also allows the sequence q
code(n)
====⇒ t. If ever the

environment causes a sequence of symbols from 0, 1, a that does not correspond
to this encoding, it will reveal that the initial fault did not happen, but the
controller cannot actually enforce such an invalid encoding sequence due to
liveness constraints in the states q1, . . . , qn and q′1, . . . , q

′
n. Therefore, w.l.o.g.,

we can suppose that the environment always chooses sequences that correspond
to valid encodings, and the controller can only limit the choices among these
encodings. For the sake of completeness, we also let code(b) = b.

Like in the proof of Theorem 4, we remark that A′n “simulates” An in the
following sense: Let v, v′ be any two states of An and x an observable symbol.

Then v
x−→ v′ (respectively v

fx
=⇒ v′) in An if and only if v

code(x)
====⇒ v′ (respectively

v
f code(x)
=====⇒ v′) in A′n. Thus, the controller has the same options as in Figure 7,

modulo the aforementioned encoding, and the intrinsic delay is proportional to
n · 2n, hence in Ω(2n). �
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Figure 8: A variant of Figure 7 with fixed alphabet size.

4. Size-Optimal Controller

4.1. Characterization of unambiguous sequences

In this section, we characterize the infinite unambiguous sequences in an ef-
ficient way. Fix a finite-state live, convergent LTS A = 〈Q, q0,Σ, T 〉 for the rest
of the section. We build a Büchi automaton B = (B′, F ) that “reads” the obser-
vation sequences of A, i.e. Lω(B′) = P(Lω(A)), and accepts the unambiguous
sequences among those. Since B is the base of the active diagnoser constructed
in Section 4.2, we want B to be deterministic.

A potential procedure for obtaining a deterministic automaton accepting
unambiguous sequences is as follows: First, build a non-deterministic Büchi au-
tomaton which accepts sequences of observations that can be triggered by both
a correct and a faulty sequence, leading to a quadratic blow up w.r.t. the size
of A. Then, determinize it by the Safra procedure [9], yielding a determinis-
tic Rabin automaton, and complement it so that it accepts the unambiguous
sequences. However, this construction has several drawbacks that will be dis-
cussed at the end of the subsection. In the following we provide a simpler and
more efficient construction.

We first give some intuition about the way our automaton B works. Its
states are triples 〈U, V,W 〉, where U, V,W ⊆ Q. The states in U represent
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states reachable by non-faulty traces in A, whereas V ∪ W are states reach-
able by performing a fault. Let σ = a1a2 . . . ∈ Σωo be an observation sequence.
An ambiguous prefix of σ will lead to a state in which both U and V ∪ W
are non-empty, and if σ is ambiguous, then its run will eventually remain in
such states forever. Unfortunately, the reverse implication is not true, as the
example from Figure 1 shows: every finite prefix of the sequence aω is ambigu-
ous, but aω is not. In order to distinguish ambiguous sequences from those
that merely have infinitely many ambiguous prefixes, V and W assume differ-
ent functions: W represents a “watchlist”, initially empty. Suppose that for
some j ≥ 1, the observation a1 . . . aj−1 only corresponds to correct sequences
(implying V = W = ∅) and the observation a1 . . . aj corresponds to some faulty
executions. Then we put the states reachable by these faulty executions into
W and trace their successor states there while making further observations. If
W never becomes empty, then indeed there exists a faulty element of P(σ) in
Lω(A). On the other hand, if some observation aj′ , for j′ > j, is impossible
in all states of W , then we can conclude that no fault has occurred before aj .
In the meantime, V serves as a “waiting room”: it stores states that can be
reached by faulty sequences where the fault has occurred between observations
aj and aj′ . When W becomes empty, those states are shifted from V to W to
form the new watchlist.

Let us introduce some notations. Let S′ ⊆ S, a ∈ Σo, and L ⊆ Σ∗uo be
a language of unobservable actions. We denote δL(S′, a) := { q ∈ Q | ∃q′ ∈
S′, w ∈ L : q′

wa
=⇒ q }, and introduce the abbreviations

• δn for L = (Σuo \ {f})∗ (non-faulty executions),

• δf for L = Σ∗uofΣ∗uo (faulty executions),

• and δ∗ for L = Σ∗uo (arbitrary executions).

We can now state the formal construction of B = 〈〈S, s0,Σo, δ〉, F 〉 as follows:

• S = 2Q × 2Q × 2Q \ {〈∅, ∅, ∅〉};

• s0 = 〈{q0}, ∅, ∅〉;

• for s = 〈U, V,W 〉 ∈ S and a ∈ Σo such that δ∗(U ∪ V ∪W,a) 6= ∅, let
∆ := δf (U, a) ∪ δ∗(V, a); then

δ(s, a) =

{
〈δn(U, a), ∅,∆〉 if W = ∅
〈δn(U, a),∆ \ δ∗(W,a), δ∗(W,a)〉 otherwise;

• F = { 〈∅, S1, S2〉, 〈S1, S2, ∅〉 | S1, S2 ⊆ Q }.

Observe that disregarding the acceptance condition, the sequences read by
B exactly correspond to sequences of observations from A, i.e. P(Lω(A)). As
for F , notice that a state 〈U, V,W 〉 is accepting if either U = ∅ or W = ∅. The
case U = ∅ is reached when the sequence of observations is surely faulty (and
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U will remain empty in all successor states). On the other hand, W = ∅ means
that we can rule out that a fault has happened up to a certain point in the
past; thus if W becomes empty infinitely often, the execution is unambiguously
correct. We underline this intuition by the following proposition:

Proposition 1. A sequence of observations σ ∈ Σωo is accepted by B iff it is an
unambiguous sequence of A.

Proof: Fix an observation sequence σ of A, and a run (si := 〈Ui, Vi,Wi〉)i≥0

of B for σ.
For one direction assume that σ is ambiguous; we show that the run is non-

accepting. Let (σ′, σ′′) be a pair of witnesses for σ. Because of σ′, we have
Ui 6= ∅ for all i ≥ 0. Moreover, we will show that σ′′ implies the existence of
some i0 such that for all i ≥ i0 we have Wi 6= ∅. These two facts together mean
that the run is non-accepting, since si /∈ F for all i ≥ i0. So, let w the minimal
prefix of σ′′ containing f , and let |w|Σo

= j. Then clearly, Vi ∪Wi 6= ∅ for all
i > j.

• Either Wj = ∅, i.e. the watchlist is empty after j observations; then the
faulty run of A for σ′′ will be recorded in the watchlist after the next
observation, and remain there; we take i0 := j + 1.

• Or Wj 6= ∅; then the possibility of a fault will be recorded in the “waiting
room”. Then either the watchlist becomes empty at a later time, i.e.
Wj′ = ∅ for some j′ > j, in which case the state associated with the
faulty run for σ′′ is transferred to the watchlist in the next step, and we
take i0 := j′ + 1; or the watchlist never becomes empty (in which case
there exists another faulty sequence with same observation), and we take
i0 := j.

For the other direction, assume that this run is non-accepting. Let j be the
highest index such that sj ∈ F . Then Ui,Wi 6= ∅ for all i > j. The structure
of δ implies (i) the existence of some non-faulty prefix that can reach a state of
Uj and continue from there (without faults), and (ii) the existence of a faulty
prefix that can reach a state from Wj that can continue forever (with or without
faults). Thus σ is ambiguous. �

Example 5. Figure 9 shows the result of the construction on the system from
Figure 1. Since all non-empty sets are singletons we have represented them by
their item. Notice that any sequence ending in bω is ambiguous in Figure 1
and hence not accepted in Figure 9. On the other hand, e.g., sequence aω is
accepted: while every prefix ai, for i ≥ 1, is ambiguous, we always know after
i+ 1 observation that no fault has occurred before the i-th observation.

We briefly discuss the relationship of our determinization construction with
other standard constructions in diagnosis and automata theory. In [5], diagnos-
ability of an LTS A is decided by building two automata: one is a modification
of A that accepts the projections all non-faulty sequences, the other accepts the
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Figure 9: Büchi automaton resulting from Figure 1; accepting states have double frames.

projections of all faulty sequences, remembering whether a fault has occurred in
the current state. The cross product of these two is a non-deterministic Büchi
automaton of size 2n2 (for |Q| = n) that accepts all ambiguous sequences. A
direct determinization [9] of that cross product would yield a Rabin automaton

of size 2O(n2 logn). For subsequent theoretical considerations, we want to avoid
complex acceptance conditions. It turns out, given that the cross product is
weak in the sense that all its strongly connected components are either fully
accepting or fully non-accepting, one could apply the breakpoint construction of
Miyano and Hayashi [10] to obtain a deterministic Büchi automaton of its com-

plement language, of size 32n2

. Our construction, while similar in spirit to that
of [10], is more efficient than that: for a reachable Büchi state 〈U, V,W 〉 ∈ S,
any LTS state q ∈ Q may or may not appear in U , and it may appear in at
most one of V or W , but not in both. Thus, the number of reachable states in
B is bounded by 2n · 3n = 6n = 2O(n). Theorem 2 shows that an exponential
blowup in n is unavoidable in general, i.e. our construction is optimal up to a
constant factor in the exponent.

4.2. Synthesizing the controller

We simultaneously solve the decision and synthesis problems. As before, we
fix an LTS A = 〈Q, q0,Σ, T 〉. We shall try to construct a state-based active-
diagnoser C for A. The construction succeeds iff A is actively diagnosable.
According to Definition 7, the main challenges in building an active diagnoser
are to ensure that (i) the controlled system remains live, (ii) the controller
excludes the ambiguous sequences, and (iii) diagnosis information is provided.
For this, we introduce Büchi games with perfect information.

Definition 10 (Büchi game). A tuple G = 〈VC , VE , E, v0, VF 〉 is called Büchi
game with perfect information (between two players called Control and Environ-
ment), where VC are the vertices owned by Control, VE are the vertices owned
by Environment; VG denotes all vertices, and v0 ∈ VC is an initial vertex.
E ⊆ VG × VG is a set of directed edges such that for all v ∈ VC there exists
(v, w) ∈ E, and VF ⊆ VG is a winning condition.
A play is a function ρ : N → VG such that ρ(0) = v0 and 〈ρi, ρi+1〉 ∈ E for all
i ≥ 0; we call ρk := ρ(0) · · · ρ(k), for some k ≥ 0, a partial play if ρ(k) ∈ VC ,
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and set state(ρk) := ρ(k). We write Play∗(G) for the set of partial plays of G.
A play ρ is called winning (for Control) if ρ(i) ∈ VF for infinitely many i.

In contrast to [? ], a state of Control cannot be a deadlock. This is adapted
to our framework and simplifies the previous definition in which implicitely all
partial plays ending in a deadlock are winning for Control. In the sequel, unless
explicitely stated, all games are Büchi games with perfect information.

Definition 11 (strategy). Let G = 〈VC , VE , E, v0, VF 〉 be a game. A strategy
(for Control) is a function θ : Play∗(G)→ VG such that 〈state(ξ), θ(ξ)〉 ∈ E for
all ξ ∈ Play∗(G). A play ρ adheres to θ if ρ(i) ∈ VC implies ρ(i+ 1) = θ(ρi) for
all i ≥ 0. A strategy is called winning if every play ρ that adheres to θ is winning.
A positional strategy is a function θ′ : VC → VG such that 〈v, θ′(v)〉 ∈ E for all
v ∈ VC ; we call θ′ winning if the strategy θ with θ(ξ) = θ′(state(ξ)) is winning.

Let B = 〈B′, F 〉, with B′ = 〈S, s0,Σo, δ〉, be the deterministic Büchi automa-
ton constructed fromA in Section 4.1. We shall take B′ as the LTS component of
C. To determine contC , we construct a Büchi game based on B. The objective of
Control is to obtain an accepting run by suitably restricting the possible actions,
and any winning strategy will be a suitable candidate for contC . Intuitively, a
round of the game is played as follows:

1. Control restricts the set of possible actions to Σ′.

2. Environment chooses an action a ∈ Σ′ to determine the next state of B.

The choices of Control are subject to some restrictions. Indeed, each state
s = 〈U, V,W 〉 represents Control’s knowledge about the current potential states
of A. To ensure that the controlled system remains live, Σ′ must not cause
deadlocks in any state reachable by unobservable events from U ∪V ∪W . Also,
Control cannot prevent the uncontrollable events. So we define the admissible
sets and the game as follows.

Definition 12 (admissible action set). Let s = 〈U, V,W 〉 be a state of B.
We call Σ′ ⊆ Σo admissible for s if (i) Σuc ⊆ Σ′ and (ii) for all states q′ of

A with q
w
=⇒ q′ for some q ∈ U ∪ V ∪W and w ∈ Σ∗uo, there exists a ∈ Σ′ and

q′′ ∈ Q with q′
a−→ q′′. The admissible sets for s are denoted adm(s).

Definition 13 (controller-synthesis game). Let B = 〈〈S, s0,Σo, δ〉, F 〉 be a
Büchi automaton. We denote G(B) the game 〈VC , VE , E, s0, F 〉, where VC = S,
VE = (S × 2Σo) ∪ (S × Σo), and E = E1 ∪ E2 ∪ E3, where

• E1 = { 〈s, 〈s,Σ′〉〉 | s ∈ S, Σ′ ∈ adm(s) };

• E2 = { 〈〈s,Σ′〉, 〈s, a〉〉 | s ∈ S, a ∈ Σ′ };

• E3 = { 〈〈s, a〉, s′〉 | δ(s, a) = s′ }.
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Figure 10: Excerpt of the Büchi game for Example 1.

The set E3 is only introduced to record the sequence of observable actions
that occur during a play. Furthermore Environment can be stuck in a vertex of
S×Σo meaning that the action chosen by Environment does not correspond to
a possible behavior of the system.

Example 6. Figure 10 depicts an excerpt of the game for Example 1. In the
initial state, there are three possible admissible sets, all including c, the uncon-
trollable observable action. {c} is not an admissible set as it blocks the system.
If Environment chooses action c, it immediately loses since c is not possible
initially even after a fault.

We can now address the decision and synthesis problems. To this aim,
we shall mainly exploit the following facts: (1) Büchi games can be solved in
polynomial time, (2) a positional winning strategy can always be chosen for
Control if it wins and (3) there is a tight correspondence between winning
strategies and active diagnosers.

Notations. In the following proofs, we will, for any σ ∈ L∗(B′), denote by δ0(σ)

the unique state s such that s0
σ
=⇒ s. Recall also that Lω(B′) = P(Lω(A)).

Moreover, let ξ ∈ Play∗(G(B)) be a partial play. We define word(ξ) as the
observable actions played along ξ, i.e. word(ε) = ε, word(ξv) = word(ξ) if
v 6= S × Σo, and word(ξ〈s, a〉) = word(ξ)a. In a similar way, run(ξ) are the
states of S touched along ξ, formally run(ξ) = PS(ξ). We extend these notions
to plays ρ in the natural way. The following remark is obvious by construction
of G(B).

Remark 1. Let ρ be a play of G(B). Then word(ρ) ∈ Lω(B′) and run(ρ) is
the corresponding run in B′. Moreover, for a partial play ξ, we have state(ξ) =
δ0(word(ξ)).

Lemma 1. Given h = 〈cont , diag〉 an active diagnoser for A, there exists a
winning strategy θh in the game G(B). Moreover, there also exists a winning
positional strategy θ in G(B).

Proof: Suppose that h = 〈cont , diag〉 is any active diagnoser for A. Then,
cont defines a (not necessarily positional) strategy θh in G = G(B): for ξ ∈
Play∗(G), let θh(ξ) = 〈state(ξ), cont(word(ξ))〉. Since cont depends only on the
observable actions and Acont is live, it is easy to see that for any σ ∈ P(Lω(A)),
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cont(σ) must be admissible for δ0(σ) = state(ξ). Thus, there is indeed an edge
from state(ξ) to θh(ξ) in G.

Now, for any play ρ that adheres to θh we have that word(ρ) ∈ P(Lω(Acont)),
thus by Definition 5, word(ρ) is not ambiguous and hence by Proposition 1
accepted by B, so by Remark 1 run(ρ) touches F infinitely often and ρ is
winning, which means that θh is a winning strategy.

Finally, the existence of θh implies the existence of a positional winning
strategy due to well-known results of game theory, see, e.g., [12]. �

For the reverse direction, we show how to define a state-based pilot from
a positional strategy and we prove that this pilot is an active diagnoser if the
strategy is winning.

Definition 14. Let θ be a positional strategy in G(B). We define a state-
based pilot C(θ) := 〈B′, contC , diagC〉 by setting, for any s = 〈U, V,W 〉 ∈ S,
contC(s) := ∆′ ∪ Σuo, where θ(s) = 〈s,∆′〉, and diagC(s) := > iff U = ∅.

Lemma 2. Let θ be a positional winning strategy in G(B). Then C(θ) is an
active diagnoser for A.

Proof: We fix C := C(θ) for the rest of the proof. Note that for any state s ∈
S, contC(s) contains Σuo (by construction) and Σuc (by Definition 12 (i)). Thus,
in hC = 〈cont , diag〉, cont is a controller according to Definition 5. Moreover,
we show that hC fulfils the three conditions from Definition 7, which shows that
A is actively diagnosable.

1. Let σ′ ∈ Σ∗ and suppose that 〈ε, q0〉
σ′

−→ 〈σ, q〉 in Acont . Then σ = P(σ′),
and for s = 〈U, V,W 〉 := δ0(σ) we have cont(σ) = contC(s). Moreover, by

construction of Acont and B we have q′
w−→ q, for some q′ ∈ U ∪ V ∪W

and where w is the maximal suffix of σ′ consisting of letters from Σuo.
Since cont(σ) is admissible for s and by Definition 12 (ii), there exists an

a ∈ cont(σ) such that q
a−→ q′′ for some q′′, so by Definition 5, Acont is

live.

2. Let σ ∈ P(Lω(Acont)), let ρ = (si)i≥0 its unique run in B′, and denote
by wi, for i ≥ 0, the prefix of σ of length i. By construction of Acont ,
we have that wi+1 = wia iff a ∈ cont(wi) ∩ Σo, by construction of B′,
si+1 = δ(si, a), and by construction, cont(si) ∩Σo ∈ adm(si) and θ(si) =
〈si, cont(si) ∩ Σo〉. Therefore, the sequence s0, 〈s0, θ(s0)〉, 〈s0, a1〉, s1, . . .
is a play of G(B) that adheres to θ. Since by assumption that play is
winning, si ∈ F for infinitely many i, so σ ∈ L(B), and by Proposition 1,
σ is non-ambiguous.

3. For s = 〈U, V,W 〉 := δ0(σ) we have by construction of B that (a) q ∈ U
iff there exists w ∈ P−1(σ) ∩ L∗(A) ∩ (Σ \ {f})∗ and (b) q ∈ V ∪W iff
there exists w ∈ P−1(σ) ∩ L∗(A) ∩ Σ∗fΣ∗. Now, diag(σ) = diag(s) = >
iff U = ∅, which by the above and Definition 3 is equivalent to saying that
σ is surely faulty.
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�
We are now in a position to state the main result of this section.

Theorem 6. Let A be an LTS with n states and m controllable actions. The
active diagnosis decision and synthesis problems for A can be solved in 2O(n+m)

time. Moreover, if A is actively diagnosable, then one can synthesize a state-
based active diagnoser C for A with at most 6n states.

Proof: Lemma 1 and Lemma 2 imply that A is actively diagnosable iff
there is a positional winning strategy for s0 in G(B), and the second part of
the theorem follows from Lemma 2 and Proposition 1. As for the complexity
statement, we note that the game G(B) has O(6n · 2m) vertices and edges, and
a winning strategy can be computed in polynomial time in the size of the game
[12], which gives the result. �

We briefly discuss the relationship of our construction with that of [6]. There,
an active diagnoser is built on the basis of a powerset construction that is similar
to ours but without splitting the possibly faulty states into a ‘watchlist’ W and
a ‘waiting room’ V . However, they then face the aforementioned problem of
distinguishing sequences with infinitely many ambiguous prefixes (like aω in
Example 1) from truly ambiguous sequences (like bω), which they resolve by
examining each cycle of the automaton. Since the number of states in that
automaton is 3n,1 and there can be exponentially many cycles, this procedure
is doubly exponential in n. Our construction is only singly exponential in n.

Using Theorems 1 and 6, we get the following theorem.

Theorem 7. The active diagnosis decision problem is EXPTIME-complete.

4.3. Intrinsic delay and waiting time

We assume that A is actively diagnosable and develop the construction of
an active diagnoser with a delay close to the intrinsic delay of A, and a com-
putational complexity still in 2O(n). For simplicity, we denote the game G(B)
by G. Let G′ be any game. Given a strategy θ for G′, we denote by Playωθ (G′)
the set of plays that adhere to strategy θ, and by R(θ) the subset of states of S
that are visited by a play of Playωθ (G′). We are now in the position to introduce
the main concept of this section, the waiting time of a strategy: the maximal
number of states of S visited without encountering an accepting state over all
plays of the strategy. Observe that given a play ρ this only depends on PS(ρ)
the sequence of states of S visited by ρ.

Definition 15 (waiting time). Let θ be a strategy for G. Then the waiting
time K(θ) is defined as:

sup(j − i+ 1 | ∃ρ ∈ Playωθ (G) ∃i ≤ j ∀k ∈ [i, j] PS(ρ)(k) /∈ F )

1This is the result when only one fault type is considered; [6] actually provides for several
fault types, which we omit here for sake of simplicity.
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with the convention sup(∅) = 0.

Observe that K(θ) may be infinite for a non-positional winning strategy.
However, it is finite and strictly smaller than |S| (since there is at least one
accepting state) for a winning positional strategy. In fact, for θ a winning
positional strategy, K(θ) can be computed in linear time (with appropriate data
structures) w.r.t. the size of G. In order to present it and for subsequent use,
we introduce the following notation. Let s be a state of the Büchi automaton,
Out(s) := {a ∈ Σo | δ(s, a) is defined }.

First one computes, by increasing values, the minimal solution of the follow-
ing equation system. If s ∈ R(θ) ∩ F then Vθ(s) = 0. Otherwise:

Vθ(s) = 1 + max(Vθ(δ(s, a)) | a ∈ Σ′ ∩Out(s) s.t. (s,Σ′) = θ(s))

Then K(θ) = max(Vθ(s) | s ∈ R(θ)).

Denote by D(θ) the delay of the active diagnoser related to strategy θ. The
next lemma shows that K(θ) provides useful information about D(θ).

Lemma 3. Let θ be a strategy for game G with finite waiting time. Then:
1 +K(θ) ≤ D(θ) ≤ 1 + 2K(θ)

Proof: Intuitively, the upper bound is potentially due to a fault staying in
the “waiting room” of B for at most K(θ) steps, then in the “watchlist” for at
most K(θ)+1 steps. The lower bound is due to the fact that along a subrun with
a non-empty watchlist, a possible fault could have occurred before this subrun.
Formally, let us denote hC(θ) = 〈cont , diag〉 the active diagnoser associated with
strategy θ.
“Upper bound:” We first prove that D(θ) ≤ 1 + 2K(θ). Let σ = σ′fσ′′ ∈
L∗(Acont) be an arbitrary faulty sequence with M := |σ′′|Σo

≥ 2K(θ) + 1.
Consider the state s′ = δ0(P(σ′)) denoted by 〈U ′, V ′,W ′〉, and for 1 ≤ i ≤ M ,
the states si = δ0(P(σ′fσi)) denoted by 〈Ui, Vi,Wi〉 ∈ S and some qi with

q0
σ′fσi
===⇒ qi, where σi is the minimal prefix of σ′′ with |σi|Σo = i. Notice that it

suffices to show Uj = ∅ for some j ≤ 2K(θ) + 1 to prove the desired property.
There are three possibilities:

• Either W ′ = ∅, then by construction of B we have qi ∈ Wi for i = 1 and
indeed for all i ≤ M since Acont is live. Then by assumption on K(θ),
sk ∈ F for some k ≤ K(θ) + 1. Since Wk 6= ∅, this means that Uk = ∅, so
we set j := k.

• Or W ′ 6= ∅ and U ′ = ∅, then we set j := 1.

• Or W ′ 6= ∅ and U ′ 6= ∅, so s′ /∈ F . then q1 ∈ V1, i.e. in the waiting
room. Let k ∈ {1, . . . ,K(θ)} be the minimal value with sk ∈ F , then
qk ∈ Vk. If Uk = ∅, we set j := k. Otherwise Wk = ∅. Then the successor
of qk will be “transferred” to the watchlist in the next step, i.e. qi ∈ Wi

for i > k. Using again the definition of K(θ), there is sk′ ∈ F for some
k < k′ ≤ k+K(θ)+1 ≤ 2K(θ)+1, and since Wk′ 6= ∅, this means Uk′ = ∅,
so we set j := k′.
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“Lower bound:” We now prove that 1 +K(θ) ≤ D(θ). Let σ = σ′a1 · · · aK(θ) ∈
P(L∗(Acont)), and ti = 〈Ui, Vi,Wi〉 := δ0(σ′a1 · · · ai), for i = 0, . . . ,K(θ), where
t0 ∈ F and t1, . . . , tK(θ) /∈ F . Such a word exists by assumption on K(θ).
First, tK(θ) /∈ F implies UK(θ),WK(θ) 6= ∅. Since UK(θ) 6= ∅, there is a non
faulty sequence w1 ∈ Acont ending in some state of UK(θ) with P(w1) = σ.
On the other hand, since Wi 6= ∅ for all 0 < i ≤ K(θ), there is a faulty sequence
w2 = w′fw′′ with P(w2) = σ and where |w′′|Σo ≥ K(θ) (i.e. a fault that
occurs “between” t0 and t1 at the latest). But this implies that hC(θ) admits
the observation sequence σ but cannot diagnose it as surely faulty even K(θ)
observations after the possible occurrence of f in w2. �

Define KA = min(K(θ)), where θ ranges over the winning strategies for G.
Since a positional such strategy exists, we know that KA is finite and belongs
to 2O(n). Let us note DA = min(D(θ)) the intrinsic delay of A. The following
corollary provides a tight frame for DA and shows that the intrinsic delay is in
2O(n).

Corollary 1. Let A be actively diagnosable. Then: 1 +KA ≤ DA ≤ 1 + 2KA

Let us compute an active diagnoser or, equivalently, a strategy θ that achieves
K(θ) = KA. To this aim, we introduce a family of games (Gi)i∈N defined as fol-
lows. The set of vertices of Gi are: VGi = {vj | v ∈ VG∧0 ≤ j ≤ i}∪{lost} where
the subset of vertices owned by Control are {vj | v ∈ VC ∧ 0 ≤ j ≤ i} ∪ {lost},
the initial vertex is s0

0, and the set of accepting states are {s0 | s ∈ F}. Its set
of edges E′ = E′1 ∪ E′2 ∪ E′3 is defined by:

• for all j ≤ i, 〈vj , wj〉 belongs to E′1 iff 〈v, w〉 belongs to E1;

• for all j ≤ i, 〈vj , wj〉 belongs to E′2 iff 〈v, w〉 belongs to E2;

• for all j ≤ i, 〈〈s, a〉j , s′0〉 ∈ E′3 iff 〈〈s, a〉, s′〉 ∈ E3 and s′ ∈ F ;

• for all j < i, 〈〈s, a〉j , s′j+1〉 ∈ E′3 iff 〈〈s, a〉, s′〉 ∈ E3 and s′ /∈ F ;

• 〈〈s, a〉i, lost〉 belongs to E′3 iff 〈〈s, a〉, s′〉 belongs to E3 and s′ /∈ F ;

• 〈lost , lost〉 belongs to E′3.

Game Gi has the following properties: an infinite play either ends up in lost
or visits the accepting states infinitely often, with at most i visits of the set
{vj | v ∈ S \F, 0 ≤ j ≤ i} between two visits of accepting states. The following
lemma relates strategies in G and Gi. Based on it an efficient computation of
an optimal strategy w.r.t. K(θ) can be performed.

For the remainder, we use the following notations to classify the states ac-
cording to their behaviour in Gi. Let WS i be the set of states that are part of
a winning strategy with waiting time i, i.e. s ∈ WS i if there exists a strategy
θ with K(θ) = i and s ∈ R(θ) (the set of reachable states under strategy θ).
Obviously, KA is the smallest i such that s0

0 ∈WS i.
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Lemma 4. There is a winning strategy θ in G with K(θ) ≤ i iff there is a
winning strategy θi in Gi. Moreover, in the positive case, θ can be chosen to be
positional.

Proof: Let θ be a winning strategy of G withK(θ) ≤ i. Let ρi = v
α(0)
0 · · · vα(n)

n

be a play (not visiting lost) in Gi with vn ∈ S. Define θi by: θi(ρi) = θ(v0 · · · vn).

Now a finite play ρi = v
α(0)
0 · · · vα(n)

n that adheres to θi corresponds to the play
ρ = v0 · · · vn that adheres to θ and α(n) is the number of consecutive states
of S \ F without visiting F up to vn. Since K(θ) ≤ i such a play will never
visit lost at the next state. So all the infinite plays of Gi that adhere to θi are

ρi = v
α(0)
0 · · · vα(n)

n · · · with ρ = v0 · · · vn · · · a play that adheres to θ and α(n)
the number of consecutive states of S \ F without visiting F up to vn. This
proves that such plays are winning in Gi.
Let θi be a winning strategy of Gi. Since Gi is a Büchi game, w.l.o.g. we assume
that θi is positional. We denote by S′ the subset S′ = {v | {vj}j≤i∩R(θi) 6= ∅}.
For v ∈ S′, define m(v) = max{ j | vj ∈ R(θi) }. Let us (partially) define the
positional strategy θ′i by θ′i(v

j) = θi(v
m(v)) for v ∈ S′. In order to prove that θ′i is

well-defined we show by induction on the reachability relation that vj ∈ R(θ′i)∩S
implies that v ∈ S′ and j ≤ m(v). The only interesting case is the one of a finite
play ρ that adheres to θ′i ends by: vj〈vj ,Σ′〉〈vj , a〉 with δo(v, a) = v′. Assume
that v ∈ S′. This means that vm(v) ∈ R(θi) and j ≤ m(v). So Σ′ = θi(v

m(v))
and from vm(v) adhering to θi one can reach 〈vm(v), a〉 and since δo(v, a) = v′,
one reaches either v′0 if v′ ∈ F or v′m(v)+1 if v′ /∈ F . So from 〈vj , a〉 one reaches
either v′0 if v′ ∈ F or v′j+1 if v′ /∈ F since j + 1 ≤ m(v) + 1 ≤ m(v′) ≤ i. In
both cases, the induction is proved. Thus an infinite play adhering to θ′i will
never reach lost. Due to the preliminary observation θ′i is a winning strategy.

Now let us (partially) define in G the positional strategy θ(v) = θ′i(v
j) for v ∈ S′

and an arbitrary j ≤ m(v) (since it is irrelevant). A play ρ = v0 · · · vn · · · that

adheres to θ corresponds to a play ρi = v
α(0)
0 · · · vα(n)

n · · · that adheres to θ′i with
α(n) the number of consecutive states of S \ F without visiting F up to vn. So
θ is well-defined and it is a winning strategy with K(θ) ≤ i. �

Theorem 8. If A is actively diagnosable, there exists a positional strategy θ
that fulfills K(θ) = KA. Moreover, such a strategy can be computed in 2O(n).

Proof: Using Lemma 4, one knows that there is positional strategy θ that
fulfills KA = min(K(θ)). The synthesis algorithm consists to look for a winning
strategy in Gi by increasing values of i starting from i = 0 and stop as soon as
such a strategy is found. Since i cannot reach |S|, the size of the game Gi is
quadratic w.r.t. the size of G. For the same reason, the number of iterations
is bounded by the size of G. So the positional winning strategy θ is found in
polynomial time w.r.t. the size of G i.e. still in 2O(n). �

Due to Theorem 4, this construction represents a reasonable tradeoff, since
an active diagnoser that realizes a delay equal to the intrinsic delay of A may
need to be much larger, i.e. 2Ω(n log(n)). We sketch the construction of a con-
troller that realizes the intrinsic delay once one knows that the system is actively
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diagnosable. One iteratively builds a safety game G′i parametrized by increasing
values of i. A controller state of this game is defined by (U, d) where U is the set
of states reached by a correct sequence while d (defined when U 6= ∅) associates
with every state s reached by a faulty sequence a duration d(s) ≤ i+1 since the
occurrence of the earliest fault that would lead to s. As in the previous games
the controller selects a subset of observable actions letting the environment se-
lect an action among them. The aim of the controller is to avoid states with
some d(s) = i+1. The first i for which G′i has a winning strategy is the intrinsic
delay and the winning strategy yields an active diagnoser with minimal delay.
Observe that since the intrinsic delay is bounded by 2O(n), in the worst case the
final game has 2O(n2) states due to the number of possible functions d.

5. Parametrized active diagnosis

In this section, we discuss a parametrized version of the synthesis problem
for active diagnosers. Consider once again the example from Figure 1. As we
have already seen in Section 2, it is possible to construct active diagnosers with
a delay of k, for every k ≥ 2, where such a diagnoser can admit at most k − 2
consecutive occurrences of b. This example shows that there is a certain trade-
off between the permissivity of the control component of the active diagnoser
and the delay to diagnose a fault. In the following, we propose the construction
of a parametrized active diagnoser in which the user can arbitrate this trade-off
by fixing the value of the parameter.

Fix an LTS A = 〈Q, q0,Σ, T 〉, the corresponding Büchi automaton B =
〈B′, F 〉, with B′ = 〈S, s0,Σo, δ〉, and G := G(B) as in the previous sections.

Definition 16 (permissiveness). Let h = 〈cont , diag〉 and h′ = 〈cont ′, diag ′〉
be two pilots for A. Then h is said to be more permissive than h′ (written
h � h′) if L∗(Acont′) ⊆ L∗(Acont).

To illustrate the definition, in Example 1 we have hk � hk−1, but the delay
of hk is k + 2 while that of hk−1 is only k + 1.

In Section 4.3, we have established a factor of 2 between the waiting time
and the delay of our active diagnosers. We shall therefore construct, for some
starting value d0, a family (Cd)d≥d0 of state-based pilots such that for all d ≥ d0:
(i) hCd is a (2d + 1)-active diagnoser for A, and (ii) hCd � h for any (d + 1)-
active diagnoser h of A. Notice that in item (ii), h can be any active diagnoser,
whether it is based on a finite-state pilot or not.

Recall that in G, the set WS i denotes the states that are part of a winning
strategy with waiting time i, i.e. a strategy that avoids the accepting states of
B for at most i turns. Essentially, we shall see that Cd can be constructed from
a strategy that remains in WSd.

Let WS :=
⋃
i≥0 WS i be the set of winning states in G, and K+

A the smallest

i such that WS = WS i; observe that K+
A < |S|. We shall see that for d0 = K+

A ,
the entire family (Cd)d≥d0 can be obtained from essentially one single computa-
tion, which we present in Section 5.1. Then in Section 5.2, we discuss the more
general case d0 = KA.
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5.1. Active diagnosis using parametrized LTS

We first study how to obtain the active diagnosers (Cd)d≥d0 , for d0 = K+
A .

We shall see that the entire family (Cd)d≥d0 can be represented in the form of a
single, so-called parametrized counter LTS.

Definition 17 (parametrized counter LTS). A parametrized counter LTS
(p-LTS) is a tuple Ap = 〈S, s0,Σ

′, T ′, op〉, where 〈S, s0,Σ
′, T ′〉 is an LTS, S is

finite, and op is a mapping op : S → ({↑} ∪ N≥1).

Intuitively, a p-LTS represents an LTS equipped with an additional counter,
and states are equipped with operations working with that counter. A state
with operation ↑ sets the value of the counter back to its initial value when the
LTS enters that state. A state with operation o ∈ N decreases the value of the
counter and can only be entered when the remaining value is at least o. Note
that the value to which the counter is set by ↑ is itself not part of the p-LTS; it
depends on a parameter that, after constructing the p-LTS, can be instantiated
to an arbitrary value.

Example 7. Consider the LTS of Figure 1 and suppose that the p-LTS is cur-
rently in state s2 with a counter value of 4. Since op(s2) = 2, we can take the
b-labelled loop around s2 two times, which decreases the counter to 2. Next,
decreasing the counter again would yield 1, so we can only go to s1 with a, fol-
lowing which the only option is to go to s3, which will set the counter back to
its initial value (of which we will speak later).

The concrete semantics of Ap depends on the value of the aforementioned
parameter and, for a value d, can be expressed as an LTS

Ap(d) := 〈S × {1, . . . , d+ 1}, 〈s0, d+ 1〉,Σ′, T ′d〉,

where the second component of the states is the current value of a finite counter
and 〈〈s, x〉, a, 〈s′, x′〉〉 ∈ T ′d iff there exists 〈s, a, s′〉 ∈ T ′ such that

• either op(s′) = ↑ and x′ = d+ 1;

• or op(s′) = c ∈ N≥1, x > c, and x′ = x− 1.

Ap is called deterministic if the underlying LTS is deterministic, and in this
case Ap(d) is also deterministic for all d.

We shall now synthesize such a p-LTS Bp from the Büchi automaton B and
the game G. It uses the states of B, and for any d ≥ d0, Bp(d) can serve as
the LTS component of a state-based pilot for A, where no run stays outside the
accepting states F for more than d steps. For this latter property, consider the
following equation system, whose variables are the elements of S.

V (s) =


∞ if s /∈WS ;

0 if s ∈ F ∩WS ;

1 + minΣ′∈adm(s) maxa∈Σ′∩Out(s) V (δ(s, a)) otherwise

(1)
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Let v∗ denote the smallest solution for V . Recall that states outside WS can
never be touched by any winning strategy. It is therefore easy to see that when
v∗(s) = k for s /∈ F , then the “fastest” strategy for Control to force G back
into F requires k further observations in the worst case; moreover, the largest
value in v∗ equals K+

A . We formalize these observations in the following remark,
which will be useful later:

Remark 2. The construction of G and Equation (1) imply that for every state
s of WS there exists a set Σ′ ⊆ Σ such that Σ′ is admissible for s, for every
a ∈ Σ′∩Out(s), δ(s, a) = s′ ∈WS , and additionally, (i) if s /∈ F and v∗(s) = k,
then v∗(s′) < k; (ii) if s ∈ F , then v∗(s′) ≤ K+

A .

The p-LTS Bp is constructed from the solution for v∗, more precisely Bp :=
〈WS , s0,Σo, δ

′, op〉, where δ′ is the restriction of δ to WS and op(s) = ↑ if
s′ ∈ F , or op(s) = v∗(s) otherwise. The behaviour of a controller for d ≥ K+

A is
now given by Cd := 〈Bp(d), contd, diagd〉, where for all states r = 〈〈U, V,W 〉, x〉
of Bp(d) we set contd(r) = { a | ∃r′ : r

a−→ r′ } ∪ Σuc ∪ Σuo and diagd(r) = > iff
U = ∅.

Note that such a controller can be realized without explicitly generating the
LTS Bp(d). At runtime, it suffices to keep in memory the p-LTS Bp and to
keep track of the current state r = 〈s, x〉, where s ∈ WS and x is the value
of the counter. Then contd(r) can be obtained from inspecting x and op(s′)
for all successors s′ of s, and diagd(r) only depends on s, so both can be easily
determined at runtime. We remark that this scheme is actually quite powerful –
for instance, if the user desires to dynamically change the value of d at runtime,
this can be done whenever the controller passes a state from F .

Example 8. Consider the LTS of Figure 1, for which the deterministic Büchi
automaton B is shown in Figure 9. The values of v∗ in B are 0 for the accepting
states and 1 or 2 for the non-accepting states. Figure 11 shows the automaton
with states renamed for simplicity and annotated with their operations. The
automaton Bp has exactly the structure of B.

In this example, we have K+
A = 2. Thus, in Bp(3), for instance, the initial

state would be 〈s0, 4〉, allowing to move into 〈s2, 3〉 with b. In 〈s2, 3〉, the control
allows {a, b}, and if the environment chooses b, that would lead us to 〈s2, 2〉.
In that state, however, the value of the counter obliges the controller to block
action b and force an a, going to 〈s1, 1〉. In this case, the actual delay of the
controller is 4 (realised, for instance, by the observation bbac).

We now formally prove that the construction given above has the desired
properties.

Theorem 9 (parameterized active diagnosis). Let A be an actively diag-
nosable LTS with n states. Then Bp can be computed in 2O(n) time, and for all
d ≥ K+

A ,

1. Cd is a state-based pilot for A;
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Figure 11: The p-LTS Bp arising from Figure 1.

2. hCd = 〈cont , diag〉 is a (2d+ 1)-active diagnoser for A;

3. and hCd � h for any (d+ 1)-active diagnoser of A h.

Proof: The complexity result follows mostly from previous results (Propo-
sition 1 and Theorem 6), coupled with the fact that v∗ can be obtained by a
Kleene fixpoint computation in at most K+

A iterations, where K+
A is trivially

bounded by the number of non-accepting states, i.e. less than 6n.
As for the remaining items, let us first denote, for σ ∈ Σ∗o, the unique state

q such that 〈s0, d+ 1〉 σ
=⇒ q in Bp(d) by δ′0(σ).

1. Observe that Cd fulfils requirements (1) and (2) of Definition 8 by con-
struction. Moreover, we need to show that hCd fulfils the three conditions
from Definition 7.

(i) Acont is live: Let σ′ ∈ Σ∗ and 〈ε, q0〉
σ′

=⇒ 〈σ, q〉 in Acont . Then
σ = P(σ′). We prove that the following statements are invariant by
induction over the length of σ:

(I) δ′0(σ) = 〈s, x〉 for s = δ0(σ), s ∈WS , and some x > 0;

(II) s ∈ F iff x = d+ 1;

(III) if s /∈ F then x ≥ v∗(s);
(IV) cont(〈s, x〉) is admissible for s.

The liveness statement then follows from the last item like in the
proof of Lemma 2, part 1.

Certainly (I)–(III) hold for σ = ε, where s = s0 ∈ F and x = d + 1.
All successor states of s0 in Bp are annotated either by ↑ or by a
value v∗(s′) ≤ K+

A < d+ 1, so cont(〈s0, d+ 1〉) authorizes all actions
that remain in WS . Then (IV) follows from Remark 2.

For the induction step, suppose that (I)–(IV) hold for σ, and we
shall prove it for σ′ = σa, for some σa ∈ P(L∗(Acont)), and let
δ′0(σ′) = 〈s′, x′〉. Then (I) follows from the construction of Bp and
the fact that a ∈ cont(〈s, x〉) implies δ(s, a) ∈ WS . (II) and (III)
follow immediately from the construction of Bp. Finally, (IV) follows
again from Remark 2.
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(ii) This follows from the fact that the counter x is decremented whenever
Bp(d) is in a state 〈s, x〉 with s /∈ F ; for x = 1, the only remaining
possibility is to choose an admissible set that forces the run into F .
Since the maximal value of F is d + 1, a run can stay outside F for
at most d consecutive steps.

(iii) diag(σ) = > iff σ is surely faulty: obvious by construction, cf the
proof of Lemma 2, part 3.

2. Let θhCd
be the strategy obtained from hCd in Lemma 1. Then, by item

1 (ii) in this proof, K(θhCd
) ≤ d. The statement then follows from

Lemma 3.

3. Let h = 〈cont ′, diag ′〉 be a (d + 1)-active diagnoser and suppose by con-
tradiction that hCd � h does not hold. Then let us choose a minimal (by
prefix order) word σ′ from L∗(Acont′)\L∗(Acont) (cf. Definition 16). Since
cont can only block controllable actions, we have P(σ′) = σa (for some
σ ∈ Σ∗o, a ∈ Σo such that a /∈ cont(σ). According to the proof of item
1, we know that cont(σ) = contd(〈s, x〉), where 〈s, x〉 = δ′0(σ). So either
s′ := δ(s, a) /∈WS , but then h cannot avoid all ambiguous sequences and
is not an active diagnoser. Or s, s′ /∈ F and v∗(s′) = x′ ≥ x. Notice the
run of σ in B has already seen d+ 1− x consecutive non-accepting states,
s′ adds one more, and from s′ the environment can force us to see x − 1
more such states before returning to F . So if θh is the strategy obtained
from h, then K(θh) ≥ (d+ 1− x) + 1 + (x− 1) = d+ 1. So by Lemma 3,
D(θh) ≥ d+2, implying that h is not a (d+1)-diagnoser. Thus, the initial
contradictory hypothesis is impossible.

�

5.2. Extending the parametrized construction

We briefly sketch how the synthesis of the family (Cd) can be extended to
values KA ≤ d < K+

A . The general idea is the same, but is less conveniently
represented in parametrized fashion.

In the construction for d ≥ K+
A , the control admits actions that let Cd remain

in states from WS , while making sure that the runs return to states of F in
“due time”. For values between KA and K+

A , two things change:

• The control must keep the runs of Cd in states of WSd ⊂ WS ; indeed
states in WS \WSd cannot assure a waiting time of d.

• As a result, certain states of WSd must change their strategy. Consider
Figure 12, displaying a hypothetical Büchi automaton, and suppose that
in state s1 we can choose to block either action a or b (but not both).
Then state s1 has a strategy to go to an accepting state in one single step
by blocking a, hence v∗(s1) = 1; the v∗ values are annotated next to each
state.
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Figure 12: Illustrating the extended parametrized construction.

However, when we want to construct C2 in this example, then we must
remain in the set WS 2, indicated by the dashed box. Now, blocking a
is no longer an option for s1; instead, it must block b and can reach F
in only two steps. We must therefore replace Equation (1) to take into
account the restricted choices:

Vd(s) =


∞ if s /∈WSd;

0 if s ∈ F ∩WSd;

1 + minΣ′∈adm(s) maxa∈Σ′∩Out(s) Vd(δ(s, a)) otherwise

(2)

The procedure now works as follows for a given d:

1. Solve Equation (2) to obtain the minimal solution v∗d.

2. Create Bp as before, but the state space becomes WSd instead of WS ,
and the operations are obstained from v∗d instead of v∗.

In particular, this means that the construction of Bp is no longer independent
of d, unlike for the case d ≥ K+

A . This also implies that the user does not have
the option to dynamically change d during runtime.

6. Conclusion and Perspectives

We have developed an active-diagnosis method for finite-state systems, shown
it to be optimal w.r.t. several criteria, and developed a parametrized version of
active diagnosis that allows to obtain a controller achieving an almost optimal
tradeoff between permissivity and delay.

In this work, we have considered a framework in which there is exactly
one type of fault, and where the diagnosis objective is to identify whether one
or more fault has happened. In the literature, different diagnosis objectives
have been considered. For instance, [13] considers more general fault patterns
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given by finite automata. Our framework could be quite readily adapted to
consider such patterns; essentially the construction in Section 4.1 would have to
additionally synchronize the Büchi automaton with an automaton specifying the
fault pattern. Moreover, works on diagnosis [] have also considered how to make
the diagnoser distinguish different types of faults. While for passive diagnosis,
the extension to multiple types of diagnosis is more or less straightforward, the
problem becomes more complex for active diagnosis, especially with respect to
the quantitative aspects that we consider and the tradeoffs between them (such
as delay, size of the controller). For instance, a realistic setting should take
into account that some types of faults are more urgent to detect than others.
Extending our framework to multiple types of faults is therefore non-trivial.

Future work also has several other important research leads to address. First,
it remains to determine the precise memory requirement for achieving the in-
trinsic delay; our results currently show that it lies between 2Θ(n log(n)) and
2Θ(n2). In another lead, the control used for active diagnosis could be refined
into a safe control, i.e. one that does not “encourage” the faulty behaviours.
Finally we aim at addressing infinite-state systems or systems with quantitative
features, as for passive diagnosability in pushdown systems [14], Petri nets [15],
timed [16, 17] and probabilistic systems [18]. Some of us have already analyzed
the probabilistic case pointing out the different decidability status of active
diagnosability and safe active diagnosability [19].
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