
Guarded Autonomous Transitions
Increase Conciseness and Expressiveness

of Timed Automata

S. Donatelli1 and S. Haddad2

1 Dipartimento di Informatica, Università di Torino, Torino, Italy
2 LSV, ENS Paris-Saclay, CNRS, Inria, Université Paris-Saclay, Cachan, France

donatelli@di.unito.it, haddad@lsv.fr

Abstract. Timed Automata (TA) are an appropriate model for speci-
fying timed requirements for Continuous Time Markov Chain (CTMC).
However in order to keep tractable the model checking of TA over a
CTMC, temporal logics based on TA, like CSLTA, restrict TA to have a
single clock and to be deterministic (DTA). Different variants of DTA
have been proposed to address the issue of their expressiveness and
conciseness. Here we study the effect of two possible features: (1) au-
tonomous transitions which are triggered by time elapsing in addition
to synchronized transitions and (2) transitions guarded by propositional
formulas instead of propositional formulas guarding locations. We first
show that autonomous guarded transitions increase the expressiveness
of DTA (as already shown for guarded locations). Then we identify a
hierarchy of DTA subclasses all equivalent to DTA without autonomous
transitions and we analyze their respective conciseness. In particular we
show that eliminating reset in autonomous transitions implies an expo-
nential blow-up while eliminating autonomous transitions without reset
can be performed in polynomial time with the help of decision diagrams.
Finally we compare TA with guarded transitions to TA with guarded
locations showing that the former model is exponentially more concise
than the latter one.

1 Introduction

Model checking CTMC. Defining some modal logic for specifying properties of
a CTMC is a natural goal, since a CTMC is a (probabilistic) transition system.
In fact the first main logic that has been proposed, CSL [5], is a variant of CTL
where (1) the ‘for all paths’ and ‘there exists a path’ operators have been re-
placed by the operator expressing ‘the probability that a random path is greater
(or smaller) than some threshold’ and (2) the ‘until’ operator is equipped with
a time interval. The core of the associated model checking procedure consists in
building some CTMCs and to analyze their transient behavior. CSL has been
extended in several directions [6, 7] and tailored for dealing with CTMCs gen-
erated by generalized stochastic Petri nets [13]. Another approach consists in
specifying the formula by a timed automaton (or even an hybrid automaton)

such as done in [16, 3, 10]. However without restriction, the model checking pro-
cedure can (1) either be based on simulation which only provides an estimation
of the probability to be computed or (2) numerically solve multiple integrals
which do not scale at all. When the timed automaton has a single clock and is
deterministic (DTA), there is an efficient model checking procedure related to
some particular Markov regenerative process. In addition, the logic CSLTA [12]
which follows such an approach has be proven to extend CSL and most of its
variants.

Classes of DTA. The basic family of DTA only includes synchronized transitions:
such a transition has a temporal guard and a subset of actions. The synchronized
product of the CTMC and the DTA evolves by triggering a transition of the
CTMC which can be matched by a transition of a DTA (i.e. the guard should be
satisfied and the action labelling the transition of the CTMC is included in the
subset labelling the transition of the DTA). In order to increase the expressive
power of this family one introduces autonomous transitions: such a transition
has a temporal threshold and when the clock value reaches this threshold, in the
synchronized product only the DTA evolves. Moreover since a state of CTMC
can be labelled by a valuation of atomic propositions, (1) either one can label
the locations of the DTA by a propositional formula that should be satisfied by
the valuation of the matching state, (2) or one can label the transitions of the
DTA by a precondition that should be satisfied by the valuation of the matching
source state and a precondition that should be satisfied by the valuation of
the matching target state. The former family is denoted As while the latter is
denoted Ag, the main topic of our work.

Expressiveness and conciseness. In order to compare expressiveness of families
of DTA, the usual qualitative notion is related to their timed languages: a family
A is at least as expressive as a family A1 if for any DTA in A there is a DTA
in A1 with the same language. Since the DTAs we study are used for defining
the acceptance probability of a CTMC, we also introduce a quantitative notion:
a family A is at least as expressive as a family A1 if for any DTA in A there is
a DTA in A1 such that for any CTMC their acceptance probabilities are equal.
When a family A is at least as expressive as a family A1, it raises other issues:
(1) effectiveness, i.e. does there exist an algorithm for producing an equivalent
DTA? (2) cost, i.e. what is the complexity of this algorithm? and (3) conciseness
what is the size of the equivalent DTA w.r.t. the size of the original one?

Our contributions. We first show that in Ag (as in As [11]) autonomous tran-
sitions strictly increase expressiveness even w.r.t. the quantitative notion. Then
we characterize a large subclass of Ag, denoted Arcg for which autonomous tran-
sitions do not increase expressiveness even w.r.t. the qualitative notion. This
class Arcg includes the class of DTAs with not reset on autonomous transitions,
denoted Anrag , but we prove that Arcg is exponentially more concise than Anrag . On
the contrary, we establish that one can transform a DTA in Anrag into an equiv-
alent DTA with no autonomous transition in polynomial time. This reduction

2

is tricky and requires to specify propositional formulas by decision diagrams.
Finally we compare Ag and As showing that the former family is exponentially
more concise than the latter one.

Organization. In Section 2, we introduce the syntax and semantics of DTA with
autonomous guarded transitions and we define qualitative and quantitative no-
tions of expressiveness. In Section 3 we present a hierarchy of subclasses of DTA
with autonomous guarded transitions and establish a full classification w.r.t. ex-
pressiveness and conciseness. Section 4 establishes that using guarded transitions
yields an exponentially more concise model than the one with guarded locations.
Finally we conclude and give some perspectives to this work in Section 5. The
appendix includes some proofs.

2 Preliminaries.

DTA are interpreted as a way to define timed paths of a CTMC, that can be
accepted of rejected by the DTA itself. The CTMCs we consider are CTMCs with
actions from a set Act and a valuation of a set of propositions AP associated to
the CTMC states. Assuming indices start at 0, we identify the pi`1q-th state of
a timed path with vi, the boolean evaluation of the atomic propositions in that
state, δi, the delay before action ai or equivalently the sojourn time in state i,
and τi to indicate the time elapsed until exiting state i. A timed path leaves
state vi with action ai after a sojourn time in the state equal to δi. The elapsed
time can be computed as: τi “ δi ` τi´1, with τ´1 “ 0.

Definition 1 (Timed Path). Given a set AP of atomic propositions and a

set Act of actions, a timed (infinite) path is a sequence pv0, δ0q
a0
ÝÑ pv1, δ1q

a1
ÝÑ

¨ ¨ ¨ pvi, δiq
ai
ÝÑ ¨ ¨ ¨ such that for all i P N : vi P tJ,Ku

AP , ai P Act , δi P Rě0.

Example 1 (Timed path). In writing timed paths we indicate functions vi as
the set of elements in AP that evaluate to J. Given AP “ tp, qu and Act “ ta, bu

a timed path ptp, qu, 0.3q
a
ÝÑ ptpu, 0.2q

b
ÝÑ ptqu, 1q

a
ÝÑ ¨ ¨ ¨ , is interpreted as (1) the

system staying in a state fulfilling p ^ q in the time interval r0, 0.3r, where at
time 0.3 action a takes place, (2) the system moves to a state fulfilling p^ q,
stays there for 0.2 time units and then action b takes place, and (3) the system
moves to a state fulfilling p^ q, stays there for 1 time units and then action a
takes place (at the global time τ “ 1.5).

DTA definition includes a clock x and two types of timed constraints asso-
ciated with transitions: boundary ones, BoundC = tx “ α, α P Nu and inner
ones, InC = tα ’ x ’1 βu, with ’,’1P tă,ď, u, α P N, and β P NY t8u. In the
sequel, C is the largest time constant occurring in a DTA. Transitions also have
an input and an output guard (indicated with ϕ´ and ϕ` respectively).

Before formally defining the syntax and semantic of a DTA (definitions 2, 3
and 4), let us introduce its main ingredients. During the execution of a stochastic
discrete event system (e.g. a CTMC) that can be represented by a timed path,

3

the current location, say `, is matched with the current state of the system, say
s “ pvi, δiq. This matching evolves in three ways depending on the delay d ď δi
(initially equals to δ0), elapsed until the next transition pvi, δiq

ai
ÝÑ pvi`1, δi`1q

of the system.

– Either after some delay δ ď d, there is an outgoing autonomous transition
from ` which is enabled, meaning that (1) its boundary condition (say x “ α)
is satisfied and (2) vi fulfills ϕ´. Then after delay δ, `1 is matched with s
and d is decreased by δ.

– Else if there is a synchronizing transition outgoing from ` after time d has
elapsed is enabled meaning that (1) vi satisfies ϕ´, (2) its inner condition
(say α ’ x ’1 β) is satisfied, (3) the action a belongs to the subset of actions
associated with the synchronizing transition, and (4) vi`1 satisfies ϕ`. Then
after delay δi, `

1 is matched with s1 “ pvi`1, δi`1q and d is set to δi`1.
– Otherwise there is no possible matching and the timed path is rejected by

the DTA.

When a transition of the DTA is fired, clock x may keep its current value or may
be reset. In the first two cases above, when `1 “ `f , the final location, the timed
path is accepted by the DTA whatever its future. This is ensured by the existence
of the unique (looping) synchronizing transition from `f with no boolean guards,
no timing and no action conditions. Observe that the synchronization may go
on forever without visiting `f : in this case the timed path is rejected.

Furthermore the synchronization of the stochastic system with the DTA
should not introduce non determinism. So (1) synchronizing transitions out-
going from the same location are never simultaneously enabled, (2) autonomous
transitions outgoing from the same location are never simultaneously enabled,
and (3) autonomous transitions have priority over synchronizing transitions.

Definition 2 (DTA). A DTA is defined by a tuple A “ xL, `0, `f ,AP , Synch,
Auty where L is a finite set of locations, `0 P L is the initial location, `f P L is
the final location, Synch Ď Lˆ BAP ˆ InCˆ 2Actˆ

H, Ó
(

ˆBAP ˆ L is the set

of synchronizing transitions, and Aut Ď L ˆ BAP ˆ BoundC ˆ 7ˆ

H, Ó
(

ˆL is
the set of autonomous transitions.

`
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ `1 denotes the synchronized transition p`, ϕ´, γ, B, r, ϕ`, `1q.

and `
ϕ´,γ,7,rp,ϕ´q
ÝÝÝÝÝÝÝÝÝÑ `1 (repeating sometimes the ϕ´ formula for unifying the

notation) denotes the autonomous transition p`, ϕ´, γ, 7, r, `1q.
Furthermore A fulfills the following conditions.

– Determinism on actions. @B,B1 Ď Act s.t . B XB1 ‰ H,@`, `1, `2 P L,

if `
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ `1 ^ `
ϕ1´,γ1,B1,r1,ϕ1`

ÝÝÝÝÝÝÝÝÝÝÑ `2 then
ϕ´ ^ ϕ1´ ô K or ϕ` ^ ϕ1` ô K or γ ^ γ1 ô K.

– Determinism on autonomous transitions. @`, `1, `2 P L,

if `
ϕ´,x“α,7,r
ÝÝÝÝÝÝÝÑ `1 and `

ϕ1´,x“α1,7,r1

ÝÝÝÝÝÝÝÝÑ `2 then ϕ´ ^ ϕ1´ ô K or α ‰ α1.

– Condition on the final location. `f
J,J,Act,H,J
ÝÝÝÝÝÝÝÝÑ `f P Synch.

4

Ag denotes the whole family of automata of Definition 2. We informally write “a
transition with reset” or “a transition without reset” to indicate the condition
r “Ó and r “ H respectively.

`0

`1

`2

`3 `f

p^ q, α

p^ q, α

x “ α, p^ qx “ α, p^ q

α ă x ă β, q

x ą α

α ă x ă β, p^ q

α ă x ă β, q

p, p

x “ α, p^ q

x “ α, p^ q

α ă x ă β, p^ q

Fig. 1. A DTA specification of pUsα,βrq with α ą 0.

Example 2 (DTA example). Figure 1SD: out of margins
shows a DTA with locations `0, `1, `2, `3 and `f . The single initial location is
`0. Autonomous transitions are depicted as dotted arcs, while synchronizing are
depicted as solid arcs. For readability and conciseness we omit in the drawings:
1) the symbol 7 on autonomous transitions; 2) the set r when there is no re-
set; 3) Act if a transition accepts all actions; 4) trivially true clock guards (like
x ě 0) and input or output guards; 5) the name x of the clock in x “ α guards
of autonomous transitions. As a result an autonomous transition is depicted as

either l
ϕ´,α

Ź l1, or as l
ϕ´,α,Ó

Ź l1,if there is a clock reset. SD: not quite the

same arrow as in Fig. 1
The two dotted arcs out of `0 correspond to autonomous transitions, mutually
exclusive due to their guards. Note that the self loop on `0 represents a syn-
chronizing transitions, so it is mutually exclusive with the other two transitions
out of `0 because of priority. Note that guards of the form x “ α, typically
associated with autonomous transitions, can also be associated to synchronizing
transitions. Figure 1 illustrates how to specify the temporal formula pUsα,βrq
with a DTA A P Ag. Since the clock counts time elapsed, no reset occurs. Ob-
serve that in the interval r0, αr, the current location can only be `0 with the
additional requirement that if an action occurs then p has to be fullfilled inside
the whole interval. At time α, the current location can only be `1 or `2 depend-
ing on the truth value of q and with the guarantee that p holds in the interval
r0, αs. Considering the first action that occurs after α, there are three possible
cases: (1) p ^ q was satisfied and the formula is satisfied (by taking transition

5

from `2 to `f), (2) p^ q was satisfied, q is now satisfied and the action occurs
before β and so the formula is satisfied (by taking transition from `1 to `f) (3)
or p^ q was satisfied and it is still satisfied and the action occurs before β, and
so (by taking transition from `1 to `3) there is the same possibility to satisfy the
formula represented by location `3.

Definition 3 (Run of a DTA).

A run of A P Ag is a sequence: ρ “ p`0, v0, x̄0, δ0q
ϕ´0 ,γ0,B0,r0,ϕ

`
0

ÝÝÝÝÝÝÝÝÝÝÑ p`1, v1, x̄1, δ1q
ϕ´1 ,γ1,B1,r1,ϕ

`
1

ÝÝÝÝÝÝÝÝÝÝÑ ¨ ¨ ¨ p`i, vi, x̄i, δiq
ϕ´i ,γi,Bi,ri,ϕ

`
i

ÝÝÝÝÝÝÝÝÝÝÑ ¨ ¨ ¨ such that for all i P N,

`i P L, vi P tK,Ju
AP , δi P Rě0, `i

ϕ´i ,γi,Bi,ri,ϕ
`
i

ÝÝÝÝÝÝÝÝÝÝÑ `i`1 P E “ SynchYAut,

vi |ù ϕ´i , vi`1 |ù ϕ`i , x̄i ` δi |ù γi, x̄i`1 “

#

0 if ri “Ó

x̄i ` δi otherwise

Let x̄7 “ mintα | D`i
ϕ,x“α,7,r
ÝÝÝÝÝÝÑ `1 P E ^ x̄i ď α^ vi |ù ϕu.

If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi ă x7.

Example 3 (DTA run). In the run we, again, describe v in terms of the subset
of AP that evaluate to J. Let us describe a possible run of the DTA of Figure 1,
assuming α “ 1 and β “ 4. The run starts with v0 “ tpu; at time 0.4, it goes
from `0 to `0 by performing the synchronizing transition of the self-loop over `0.
Then at time 1.0, it autonomously goes to location `2. If the next action happens
at time 6.0 then it goes to `f . Note that this is a case in which the formula is
satisfied already at time β, since β “ 4, but the run reaches the final location
only at time 5.0 ą β, when the first synchronizing transition takes place, and
stays in the final location forever. The run described above corresponds, in more
formal terms, to:

p`0, tpu, x̄0 “ 0.0, δ0 “ 0.4q
p,xě0,Act,H,p
ÝÝÝÝÝÝÝÝÝÑ p`0, tp, qu, 0.4, 0.6q

p^q,x“1,7,H
ÝÝÝÝÝÝÝÝÑ

p`f , tp, qu, 1.0, 5.0q
J,xą1,Act,H,J
ÝÝÝÝÝÝÝÝÝÝÑ p`f , tpu, 6.0, 2.4q

J,xě0,Act,H,J
ÝÝÝÝÝÝÝÝÝÝÑ p`f ,H, 8.4, 0.7q ¨ ¨ ¨

A timed path σ is recognized by a run ρ of A such that the occurrences of
the actions in σ are matched by the synchronizing transitions in ρ. This requires
to define a mapping to “couple” the points in the paths in which synchronizing
transitions take place. This can be done by identifying a strictly increasing map-
ping for the indices of the timed path σ to the subset of the indices of the run
ρ that correspond to a synchronizing transition.

Definition 4. Let σ “ pv0, δ0q
a0
ÝÑ pv1, δ1q

a1
ÝÑ ¨ ¨ ¨ pvi, δiq

ai
ÝÑ ¨ ¨ ¨ be a timed

path and ρ “ p`0, v
1
0, x̄0, δ

1
0q

ϕ´0 ,γ0,B0,r0,ϕ
`
0

ÝÝÝÝÝÝÝÝÝÝÑ ¨ ¨ ¨ p`i, v
1
i, x̄i, δ

1
iq

ϕ´i ,γi,Bi,ri,ϕ
`
i

ÝÝÝÝÝÝÝÝÝÝÑ ¨ ¨ ¨ be
a run of a DTA A. Then σ is recognized by ρ if there is a strictly increasing
mapping κ : NÑ N (extended to κp´1q “ ´1q, such that for all i P N:
– ai P Bκpiq and δi “

ř

κpi´1qăhďκpiq δ
1
h;

– @h, κpi´ 1q ă h ď κpiq ñ v1h “ vi and h R κpNq ñ Bh “ 7.
A timed path σ is accepted by A if σ is recognized by a run ρ that visits `f .
The language LpAq of A is the set of the timed paths accepted by A.

6

Note that, due to determinism, if such a run exists, it is unique.

Example 4 (Timed path recognized by a DTA run). The timed path σ “

ptpu, 0.4q
a
ÝÑ ptp, qu, 5.6q

b
ÝÑ ptpu, 2.4q

c
ÝÑ pH, 0.7q ¨ ¨ ¨ is accepted by the DTA of

Figure 1 using the run of Example 3, with the mapping κ. where κp0q “ 0 and
for all i ą 0 κpiq “ i` 1.
The (Zeno) timed path σ “ ptpu, 0q

a
ÝÑ ptpu, 0q

a
ÝÑ ptpu, 0q ¨ ¨ ¨ is recognized (but

not accepted) by the DTA of Figure 1 using the run p`0, tpu, 0, 0q
p,xě0,Act,H,p
ÝÝÝÝÝÝÝÝÝÑ

p`0, tpu, 0, 0q
p,xě0,Act,H,p
ÝÝÝÝÝÝÝÝÝÑ p`0, tpu, 0, 0q ¨ ¨ ¨ , with mapping κ being the identity.

When a DTA is used for model checking a CTMC, it can be considered as
a way to select the subset of timed paths of a CTMC accepted by the DTA.
The CTMC we consider are CTMC with actions from a set Act and a valuation
of a set of propositions AP associated to the CTMC states, as in the following
definition.

Definition 5 (CTMC). A continuous time Markov chain M with state and
action labels is defined by M “ xS, s0,Act ,AP , lab,Ry, where S is a finite set of
states, s0 P S the initial state, Act is a finite set of action names, AP is a finite
set of atomic propositions, lab : S Ñ tJ,KuAP is a state-labeling function that
assigns to each state s a valuation of the atomic propositions, R Ď SˆActˆS Ñ

Rě0 is a rate function. If Rps, a, s1q ą 0, we write s
a,Rps,a,s1q
ÝÝÝÝÝÝÝÑ s1.

We assume that each state has at least one successor: for all s P S, there
exists a P Act, s1 P S such that Rps, a, s1q ą 0. CTMC executions lead to timed
paths, and a CTMC is a generator of a random path. We define by PrMpAq the
probability that the random path of M is accepted by A (probability measure
of all paths accepted by A as defined in [8]).

The paper objective is to compare different classes of DTAs in qualitative
terms (i.e., w.r.t. timed path languages) and in probabilistic terms (i.e., w.r.t.
accepting probabilities of the accepted path in a CTMC). These notions are
independent of the type of DTA, and they have been already defined in [11].

Definition 6. Let A1 and A2 be families of DTA. Then:
– A2 is at least as expressive as A1 w.r.t. language, denoted A1 ăL A2,

if for all A1 P A1 there exists A2 P A2 such that LpA2q “ LpA1q;
– A2 is at least as expressive as A1 w.r.t. CTMCs, denoted A1 ăM A2,

if for all A1 P A1 there exists A2 P A2

such that for all CTMC M, PrMpA2q “ PrMpA1q.

As usual, we derive other relations between such families. A1 and A2 are
equally expressive w.r.t. language (resp. Markov chains), denoted A1 „L A2

(resp. A1 „M A2) if A1 ăL A2 and A2 ăL A1 (resp. A1 ăM A2 and A2 ăM A1).
A2 is strictly more expressive than A1 w.r.t. language (resp. CTMCs), denoted
A1 ňL A2 (resp. A1 ňM A2) if A1 ăL A2 and not A2 ăL A1 (resp. A1 ăM A2

and not A2 ăM A1). Observe that by definition A1 ăL A2 implies A1 ăM A2.

7

3 Eliminating autonomous transitions in Ag

This section studies the role of autonomous transitions in Ag. The role of au-
tonomous transitions for DTAs in which conditions are associated with locations
(as in [12]) has been investigated in [11], where it was shown that there are indeed
certain subclasses of DTAs for which autonomous transitions can be removed,
but that in general this is not the case. The work in [11] also provides a construc-
tion to eliminate such autonomous transitions, when possible, together with an
analysis of its time and memory cost. In this section we investigate when, and
at which cost, it is possible to eliminate autonomous transitions in DTA in Ag.
We propose the following hierarchy of subclasses Anag Ď Ancg Ď Anrag Ď Arcg Ď Ag
where:
Restricted cycles. Arcg is the subclass of DTA A P Ag in which all cycles of A

including an autonomous transition with a reset also include a synchronizing
transition p`, ϕ´, γ, B, r, ϕ`, `1q with either r “Ó or γ “ px ą Cq.

No reset on autonomous transitions. Anrag is the subclass of DTA A P Arcg
in which there is no autonomous transition that resets the clock: Anrag “

tA P Ag | p`, ϕ, γ, 7, r, `1q P AutpAq ñ r “ Hu.
No reset and no cycle of autonomous transitions. Ancg is the subclass of

DTA A P Anrag in which there is no cycle of autonomous transitions.
No autonomous transitions. Anag the subclass of DTA A P Ancg with no au-

tonomous transitions.
The DTA of Figure 1 belongs to Ancg zAnag and the DTA of Proposition 1 presented
below belongs to AgzArcg ,

Let us explain why we introduce the intermediate subclasses between Ag and
Anag . Arcg points out which syntactical restrictions must be satisfied by automata
in Ag in order not to extend the expressive power of Anag . Anrag which forbids
the clock reset by automous transitions disables the capacity to combine time
constants depending on the execution. Ancg which in addition forbids loops of
autonomous transitions is mainly introduced for simplifying the translations as
we will show that it is equivalent to Anrag w.r.t. conciseness.

Our results are summarized in the frame below. Let us emphasize the main re-
sult: the elimination of autonomous transitions without reset can be performed
in polynomial time. This is particularly interesting considering that the same
elimination for DTA with guarded locations, according to [11], requires expo-
nential time. When referring to the size of a DTAg we consider the number of
locations and transitions and the size of the formulas associated with transitions.

Anag „L Ancg „L Anrag „L Arcg ňM Ag
with Arcg exponentially more concise than Anrag and a quadratic translation

from Anrag to Ancg and a polynomial translation from Ancg to Anag .

In the framework of DTA with guarded locations, the main result (Theorem 1
in [11]) is that autonomous transitions strictly increase the expressiveness w.r.t.
ăM, and therefore also w.r.t. ăL. The adaptation to Ag is immediate, since the
automaton A‹ prsented below, that is used as a counterexample in [11], does
not include any boolean expression over atomic proposition.

8

A‹: `0 `1
x ă 1

2Ó

It then trivially follows that:

Proposition 1. There exists A‹ P Ag such that for all A P Anag there exists a
CTMC M with PrMpAq ‰ PrMpA‹q. Therefore Anag ňM Ag.

‚ From Arcg to Anrag . Observe that due to the loop around location `0, A‹ does
not belong to Arcg . The remaining results of the section simultaneously establish
that: (1) Arcg characterize the DTAs for which autonomous transitions can be
eliminated and (2) characterize the cost of this elimination in terms of time
complexity and size of produced automatas. First we establish that eliminating
autonomous transitions with reset induces an unavoidable exponential blowup.

Proposition 2. There exists an algorithm operating in exponential time that
takes as input A P Arcg and outputs A1 P Anrag with LpA1q “ LpAq.
There exists a family tAnunPN in Arcg such that the size of An belongs to Opn2q
and for all A P Anrag with LpAq “ LpAnq, p|Aut| ` 1q|Synch| ě 2n.

Proof. (Sketch) The proof is given in appendix. Here we exhibit the family
tAnunPN emphasizing that depending on the initial valuation there are 2n differ-
ent delays before a sequence of autonomous transitions reaches the final location.

¨ ¨ ¨

p1, 1Ó

 p1, 0Ó

0Ó

0Ó

p2, 2Ó

 p2, 0Ó

pn, 2
n´1
Ó

 pn, 0Ó

0Ó

0Ó

‚ From Anrag to Ancg . Observe that when autonomous transitions do not reset
the clock, if a run visits twice the same autonomous transition without visiting
synchronized transitions, then no time has elapsed and it will diverge infinitely
repeating a cycle of autonomous transitions. The idea of the transformation
corresponding to the next proposition consists in duplicating locations by asso-
ciating a counter to them. This counter represents the number of autonomous
transitions visited since the last visit of a synchronized transition (or the begin-
ning of the run). When the counter exceeds the number of autonomous tran-
sitions of the DTA, then a cycle has been detected and the run ends up in a
deadlock location. The proof of this proposition can be found in appendix

Proposition 3. There exists an algorithm operating in quadratic time that takes
as input A P Anrag and outputs A1 P Ancg with LpA1q “ LpAq.

‚ From Ancg to Anag . An interesting feature of specifying propositional formulas
on transitions is that the final transformation can be performed in polynomial

9

time. To this aim we introduce a particular case of decision diagram (DD) for
representating formulas as follows. Let DG be a directed acyclic graph rooted in
u0 including a final vertex uf such that all vertices are reachable from u0 and can
reach uf as depicted in Figure 2. Every transition is labelled by a formula and
the formulas labeling outgoing transitions from a vertex are mutually exclusive
(for each variable valuation at most one formula is true). Given a valuation v,
v |ù DG if there is a path from u0 to uf such that v |ù ϕ for all ϕ labeling
the transitions of the path. Observe that there is at most one such path. Thus
deciding whether v |ù DG can be performed in linear time (assuming that the
satisfaction of a formula labeling a transition by a valuation can be performed
in linear time which is the case for standard representation of formulas).

u0 uf¨ ¨ ¨

 p1 ^ p2

p1

p2 _ p3

 p2 ^ p3

p4

p5

Fig. 2. A DD for formula p p1^p2^p4^p5q_pp1^pp2_p3q^p5q_pp1^ p2^ p3q.

The following proposition eliminates autonomous transitions when they do
not reset the clock and there is no cycle made only of autonomous transitions.
The associated transformation which is polynomial makes use of DDs for the
formulas of the transitions.

Proposition 4. There exists an algorithm operating in polynomial time that
takes as input A P Ancg and outputs A1 P Anag with LpA1q “ LpAq.

Proof. The transformation proceeds in three stages

‚ The first stage consists in duplicating the locations w.r.t. time regions. Let
0 “ α0 ă . . . ă αm “ C be the time constants occurring in A (adding 0 if
necessary). The set of time regions is tα0u, sα0, α1r, tα1u, . . . , tαmu, sαm,8r. For
all location ` and all region rg, one creates a location x`, rgy. The initial location
is x`0, tα0uy with `0 the initial location of A.

For all synchronized transition `
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ `1 and all regions rg and rg1 one

creates a transition x`, rgy
ϕ´,γ^xPrg1,B,r,ϕ`

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ x`1, rg1y. For all autonomous tran-

sition `
ϕ,x“i,7,H
ÝÝÝÝÝÝÑ `1 and all region rg, one creates a transition x`, rgy

ϕ,x“i,7,H
ÝÝÝÝÝÝÑ

x`1, tiuy. This step is obviously polynomial.

‚ Let A1 be the DTA produced by the first stage, the second stage produces
a DTA A2 where the priority of the autonomous transitions is made explicit
by restricting the temporal formulas of outgoing transitions. Let x`, rgy be a

10

location and ttk “ x`, rgy
ϕk,x“αk,7,H
ÝÝÝÝÝÝÝÝÑ x`k, tαkuyukďK be the autonomous tran-

sitions outgoing from x`, rgy with rg ď α1 ď ¨ ¨ ¨ ď αK (the other autonomous
transitions are useless and are assumed to be deleted).

For all k, one creates an autonomous transition x`, rgy
ϕk^

Ź

k1ăk ϕk1 ,x“αk,7,H
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

x`k, tαkuy.

For all synchronized transition x`, rgy
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ x`1, rg1y, one creates a transi-
tion

x`, rgy
ϕ´^

Ź

αkďrg
1 ϕk,γ,B,r,ϕ

`

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ x`1, rg1y.

Also this step is obviously polynomial. Note that in A2 the priority of au-
tonomous transitions becomes irrelevant, so A2 can be treated as DTA with
no priority for autonomous transitions. This allows, in the next step, to remove
autonomous transitions by aggregating in a single synchronized transition a path
of autonomous transitions followed by a synchronized one.

‚ The final stage that produces A1 from A2 consists in deleting the autonomous
transitions and adding new synchronized transitions as follows. For all x`, rgy
and x`1, tiuy such that there is a path of autonomous transitions from x`, rgy
to x`1, tiuy, and a synchronized transition out of x`1, tiuy, one specifies the for-

mula ϕ`
1,i
`,rg by a DD whose vertices are locations both reachable from x`, rgy by

autonomous transitions and can reach x`1, tiuy by autonomous transitions. The
edges of the DD are the autonomous transitions between such vertices, and the
edges are labeled by the formulas of the autonomous transitions (remember that
autonomous transitions only have input guards). Clearly the size of this DD is
the size of a subgraph of A2 that includes all paths of autonomous transitions

from x`, rgy to x`1, tiuy. Then for all synchronized transition x`1, tiuy
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ

x`2, rg2y, one creates a transition x`, rgy
ϕ`
1,i
`,rg^ϕ

´,xěi^γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ x`2, rg2y.

A new location `1f is added to A1, `1F being the unique final location (with its

loop), and, for all x`f , rgy the transition x`f , rgy
true,xěo,Act,H,true
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ `1f . is added

to A1.

Illustration of Proposition 4. Figure 1 illustrates how to specify the temporal
formula pUsα,βrq with a DTAg A P Anrag (and therefore also P Ancg) Observe that
in the interval r0, αr, the current location can only be `0 with the additional
requirement that if an action occurs then p has to be fullfilled inside the whole
interval. At time α, the current location can only be `1 or `2 depending on
the truth value of q and with the guarantee that p holds in the interval r0, αs.
Considering the first action that occurs after α, there are three possible cases:
(1) p^ q was satisfied and the formula is satisfied, (2) p^ q was satisfied, q is
now satisfied and the action occurs before β and so the formula is satisfied (3)
p^ q was satisfied and it is still satisfied and the action occurs before β and so
there is the same possibility to satisfy the formula represented by location `3.

Figure 3 depicts the DTA A1 P Anag obtained by applying the transformation
of Proposition 4 to the DTA A P Ancg depicted in Figure 1. W.r.t. the defined

11

transformation, we have done some simplifications. Since `1 and `2 can only
be entered at time α there is no need to duplicate them. Since `3 can only be
entered in interval sα, βr there is no need to duplicate it. In addition we have
merged x`0, 0y and x`0, s0, αr y since their outgoing transitions are identical (up
to the merging). We have also omitted locations that cannot reach the final
location. Finally, no DD is necessary since there are no path of two autonomous
transitions in the original DTA.

`0

`1

`2

`3 `f

p, x “ α, p^ q

p, x “ α, p^ q

α ă x ă β, p^ q

p^ q, x ą α

p^ q, α ă x ă β, q

x “ α, p^ qx “ α, p^ q

α ă x ă β, q

x ą α

α ă x ă β, p^ q

α ă x ă β, q

p, x ă α, p

x “ α, p^ q

x “ α, p^ q

α ă x ă β, p^ q

Fig. 3. Another DTA specification of pUsα,βrq with α ą 0.

4 DTAg versus DTAs

This section compares the conciseness of guarded transitions versus guarded
locations, i.e. comparing Ag with As. We show that a DTA in As can be converted
into a DTA in Ag in a quadratic time, while it takes an exponential time to
convert a DTA in Ag into a DTA in As, due to an (unavoidable) exponential
growth of locations. A DTA in As has conditions associated only with locations.
A transition pvi, δiq

ai
ÝÑ pvi`1, δi`1q of a timed path is recognized by a transition

from location ` to `1 of a such a DTA only if, given that all the time and action
requirements are satisfied (as for Ag) only if vi`1 |ù Λp`1q, where Λp`1q is the
boolean condition associated with location `1. We briefly recall here the definition
of a DTA in As, its runs, acceptance of timed path by a run. More explanations
and examples can be found in [11].

12

Definition 7 (DTA). A P As is defined by a tuple A “ xL,Λ, L0, `f ,AP ,
Synch, Auty where L is a finite set of locations, L0 Ď L is the set of initial
locations, `f P L is the final location, Λ : L Ñ BAP is a function that assigns
to each location a boolean expression over the set of propositions AP, Synch Ď
L ˆ InC ˆ 2Actˆ

H, Ó
(

ˆL is the set of synchronizing transitions, and Aut Ď

L ˆ BoundC ˆ 7ˆ

H, Ó
(

ˆL is the set of autonomous transitions, with E “

SynchYAut. `
γ,B,r
ÝÝÝÑ `1 denotes the transition p`, γ,B, r, `1q.

Furthermore A fulfills the following conditions.
– Initial determinism. @`, `1 P L0, Λplq ^ Λpl

1q ô K.
– Determinism on actions. @B,B1 Ď Act s.t . B XB1 ‰ H,@`, `1, `2 P L,

if `
γ,B,r
ÝÝÝÑ `1 and `

γ1,B1,r1

ÝÝÝÝÝÑ `2 then Λp`1q ^ Λp`2q ô K or γ ^ γ1 ô K.
– Determinism on autonomous transitions. @`, `1, `2 P L,

if `
x“α,7,r
ÝÝÝÝÝÑ `1 and `

x“α1,7,r1

ÝÝÝÝÝÝÑ `2 then Λp`1q ^ Λp`2q ô K or α ‰ α1.
– Conditions on the final location `f . Λp`f q “ J and p`f ,J,Act ,H, `f q P

Synch.

Definition 8 (Run of A). A run of A P As is a sequence: p`0, v0, x̄0, δ0q
γ0,B0,r0
ÝÝÝÝÝÑ

p`1, v1, x̄1, δ1q ¨ ¨ ¨ p`i, vi, x̄i, δiq
γi,Bi,ri
ÝÝÝÝÝÑ ¨ ¨ ¨ such that for all i P N: `i P L, l0 P

L0, vi P tJ,Ku
AP , δi P Rě0:

`i
γi,Bi,ri
ÝÝÝÝÝÑ `i`1 P E , vi |ù Λp`iq , x̄i`δi |ù γi , x̄i`1 “

#

0 if r “Ó

x̄i ` δi otherwise

To enforce priority of autonomous transitions,

let x̄7 “ mintα | D`i
x“α,7,r
ÝÝÝÝÝÑ ` P E ^ x̄i ď α^ vi |ù Λp`qu (minpHq “ 8)

If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi ă x7.

Definition 9 (Path recognized by A and LpAq). Let σ “ pv0, δ0q
a0
ÝÑ

pv1, δ1q
a1
ÝÑ ¨ ¨ ¨ pvi, δiq

ai
ÝÑ ¨ ¨ ¨ be a timed path and ρ “ p`0, v

1
0, x̄0, δ

1
0q

γ0,B0,r0
ÝÝÝÝÝÑ

¨ ¨ ¨ p`i, v
1
i, x̄i, δ

1
iq

γi,Bi,ri
ÝÝÝÝÝÑ ¨ ¨ ¨ be a run of a DTAs A, according to definition 8.

Then σ is recognized by ρ if there is a strictly increasing mapping κ : N Ñ N
(extended to κp´1q “ ´1q, such that for all i P N
– ai P Bκpiq and δi “

ř

κpi´1qăhďκpiq δ
1
h

– @h, κpi´ 1q ă h ď κpiq ñ v1h “ vi and h R κpNq ñ Bh “ 7
A timed path σ is accepted by A if σ is recognized by a run ρ and ρ visits `f .
The language LpAq of A is the set of the timed paths σ accepted by A.

We first consider the translation from As to Ag, which mainly consists in
shifting the formula of a location to its incoming transitions with a particular
handling of the initial locations.

Proposition 5. There exists an algorithm operating in quadratic time that takes
as input As P As and outputs Ag P Ag with LpAsq “ LpAgq.

Proof. Ag has the same structure as As except that it has an additional location
`0 which is taken as the initial one.

13

For all synchronized transition `
γ,B,r
ÝÝÝÑ `1 in As, Ag includes the synchronized

transition `
J,γ,B,r,Λp`1q
ÝÝÝÝÝÝÝÝÑ `1 and if ` P L0 then Ag includes the synchronized

transition `0
Λp`q,γ,B,r,Λp`1q
ÝÝÝÝÝÝÝÝÝÝÑ `1.

For all autonomous transition `
x“α,7,r
ÝÝÝÝÝÑ `1 in As, Ag includes the autonomous

transition `
Λp`1q,x“α,7,r
ÝÝÝÝÝÝÝÝÑ `1 and if ` P L0 then Ag includes the autonomous

transition: `0
Λp`q^Λp`1q,x“α,7,r
ÝÝÝÝÝÝÝÝÝÝÝÝÑ `1.

The quadratic factor is due to the substitution of the |L| formulas of As by at
least |E| formulas in Ag.

The reverse translation is more costly and consists in duplicating a location
w.r.t. the guards of the incoming and outgoing transitions.

Proposition 6. There exists an algorithm operating in exponential time that
takes as input Ag P Ag and outputs As P As with LpAgq “ LpAsq.

Proof. Given ` P L, let ϕ`1, . . . ϕ
`
n`

be the formulas of entering guards of transi-
tions incoming ` and exiting guards of transitions outgoing `. Then Ls “ tx`, Iy |
` P L^ I Ď t1, . . . , n`uu Y t`

˚
f u where `˚f is the final state (fulfilling the require-

ments of a DTA in As) and for all x`, Iy, Λpx`, Iyq “
Ź

iPI ϕ
`
i ^

Ź

iRI ϕ
`
i .

For all synchronized transition `
ϕ`i ,γ,B,r,ϕ

`1

i1
ÝÝÝÝÝÝÝÝÑ `1 in Ag and all I, I 1 such that i P I

and i1 P I 1, As includes the synchronized transition: x`, Iy
γ,B,r
ÝÝÝÑ x`1, I 1y.

For all autonomous transition `
ϕ`i ,x“α,7,r
ÝÝÝÝÝÝÝÑ `1 in Ag and all I, I 1 such that i P I

and i1 P I 1 with ϕ`i “ ϕ`
1

i1 , As includes the autonomous transition: x`, Iy
x“α,7,r
ÝÝÝÝÝÑ

x`1, I 1y.

For all x`f , Iy, there is a transition x`f , Iy
J,Act,H
ÝÝÝÝÝÑ `˚f .

Proposition 5 and 6 above can be trivially extended to sub-classes of As and
Ag, because the proofs are general and do not involve creation of autonomous
transitions.

The exponential blowup due to the duplication of locations is unavoidable
even without timing considerations, as shown by the next proposition.

Proposition 7. There exists a family of automata tAk
gukPN in Anag such that

the size of Ak
g belongs to Opk logpkqq and for all As P As with LpAsq “ LpAk

gq

the number of its locations is at least 2k ´ 1.

Proof. Consider the automaton Ak
g described below.

...

p1, a1

pk, ak

14

This automaton accepts timed paths whose first action may be ai only if the
initial state fullfills pi. Consider in As the locations reached at time 0 by the
runs before the first action is performed. At least 2k ´ 1 initial valuations must
reach such a location. Assume that As has less than 2k ´ 1 locations. Then two
initial valuations reach the same location. Let pi be some proposition on which
they differ. Thus there exists a initial valuation v with vppiq “ K such that a
timed path starting with ai is accepted which yields a contradiction.

5 Conclusion and future work

The results of this paper, together with those of a companion paper [11] allows
to build a better understanding of DTAs and of the various CSLTA definitions.

We have established that DTAs with autonomous transitions are more ex-
pressive that DTAs without autonomous transitions when there are cycles made
only of autonomous transitions on which there is at least a reset, irrespectively
of whether guards are associated to locations or to transitions.

Secondly, even when autonomous transitions do not enhance expressiveness,
they improve conciseness: if feasible, removing autonomous transitions may lead
to an exponential blow up of the DTA.

Finally, removing autonomous transitions from a DTA in Ag is less expensive
than doing it for a DTA in Ag. In particular to remove autonomous transitions
from a DTA with no reset on autonomous transitions (i.e. belonging to Anrag)
is polynomial if decision diagrams are used to represent propositional formulas,
while the analogous operations for a DTA belonging to Anrag is exponential.
This result has motivated a throughout comparison of DTAs and DTAg, that
has shown that guards on transitions may lead to more concise DTAs: indeed
the translation from Ag to As is exponential, while the opposite translation is
quadratic.

Various types of DTAs have been used for the definition of the stochastic logic
CSLTA. We can now assert that CSLTA definitions that include autonomous tran-
sitions are more expressive than CSLTA that do not. The counter-example of the
proof of Proposition 1 has a clear interpretation in terms of periodic behaviour,
showing that CSLTA without autonomous transitions are not adequate to ex-
press certain periodicity properties. We can also state that CSLTA specifications
that include guarded transitions can be more concise than CSLTA that consid-
ers guarded locations. Since the number of locations may significantly affect the
complexity of model-checking CSLTA, it is future work to investigate how the
component-based model-checking of CSLTA [2] can take advantage of the results
of this paper to lower the cost of model-checking.

15

References

1. M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley & Sons, 1995.

2. E.G. Amparore and S. Donatelli. Efficient model checking of the stochastic logic
cslta. Performance Evaluation, 123-124:1–34, 2018.

3. Elvio Gilberto Amparore, Paolo Ballarini, Marco Beccuti, Susanna Donatelli, and
Giuliana Franceschinis. Expressing and computing passage time measures of GSPN
models with HASL. In Proceedings of PETRI NETS 2013, Milan, Italy, volume
7927 of LNCS, pages 110–129. Springer, 2013.

4. Elvio Gilberto Amparore and Susanna Donatelli. MC4CSLTA: an efficient model
checking tool for CSLTA. In QEST 2010, pages 153–154. IEEE Computer Society.

5. Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-checking
continuous-time Markov chains. ACM Transactions on Computational Logic,
1(1):162–170, 2000.

6. Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Matthias Kuntz, and Markus
Siegle. Model Checking Markov Chains with Actions and State Labels. IEEE TSE,
33:209–224, 2007.

7. Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Ka-
toen. On the Logical Characterisation of Performability Properties, pages 780–792.
Springer Berlin Heidelberg, 2000.

8. Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen.
Model-Checking Algorithms for Continuous-Time Markov Chains. IEEE TSE,
29(6):524–541, 2003.

9. Paolo Ballarini, Benôıt Barbot, Marie Duflot, Serge Haddad, and Nihal Peker-
gin. HASL: A new approach for performance evaluation and model checking from
concepts to experimentation. Perform. Eval., 90:53–77, 2015.

10. Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. Model
checking of continuous-time Markov chains against timed automata specifications.
Logical Methods in Comp. Science, 7(1), 2011.

11. Susanna Donatelli and Serge Haddad. Expressiveness and conciseness of timed
automata for the verification of stochastic models. In Alberto Leporati, Car-
los Mart́ın-Vide, Dana Shapira, and Claudio Zandron, editors, Proceedings of the
14th International Conference on Language and Automata Theory and Applications
(LATA’20), volume 12038 of Lecture Notes in Computer Science, pages 170–183,
Milan, Italy, March 2020. Springer.

12. Susanna Donatelli, Serge Haddad, and Jeremy Sproston. Model checking timed
and stochastic properties with CSLTA. IEEE TSE, 35(2):224–240, 2009.

13. Matthias Kuntz and Boudewijn R Haverkort. GCSRL-a logic for stochastic reward
models with timed and untimed behaviour. In 8th PMCCS, pages 50–56, 2007.

14. John F. Meyer, A. Movaghar, and William H. Sanders. Stochastic activity net-
works: Structure, behavior, and application. In Int. Workshop on Timed Petri
Nets, pages 106–115. IEEE CS, 1985.

15. Linar Mikeev, Martin R. Neuhäußer, David Spieler, and Verena Wolf. On-the-fly
verification and optimization of DTA-properties for large Markov chains. Formal
Methods in System Design, 43(2), 2013.

16. W.Douglas Obal II and William Sanders. State-space support for path-based re-
ward variables. Performance Evaluation, 35:233–251, 05 1999.

16

6 Appendix

Proposition 2. There exists an algorithm operating in exponential time that
takes as input A P Arcg and outputs A1 P Anrag with LpA1q “ LpAq.
There exists a family tAnunPN in Arcg such that the size of An belongs to Opn2q
and for all A P Anrag with LpAq “ LpAnq, p|Aut| ` 1q|Synch| ě 2n.

Proof. Consider an elementary path of A not including synchronized transitions
with reset or with guard x ą C. Define its delay to be the sum of constants
occurring in its autonomous transitions with reset. Let K be the maximal delay
of such paths.
The set of locations of A1 is L1 “ tx`, iy | 0 ď i ď K^ ` P Lzt`fuuYt`fu with its
initial location x`0, 0y and final location `f (with its single looping transition).
Let γ be a guard. Define γ ` i the guard where all constants of γ are increased
by i.

For all synchronized transition `
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ `1 (` ‰ `f) of A and i ď K:

– if `1 “ `f then there is a synchronized transition x`, iy
ϕ´,γ`i,B,r,ϕ`

ÝÝÝÝÝÝÝÝÝÝÑ `f ;
– else if r “Ó or γ “ x ą C then there is a synchronized transition

x`, iy
ϕ´,γ`i,B,r,ϕ`

ÝÝÝÝÝÝÝÝÝÝÑ x`1, 0y;

– otherwise there is a synchronized transition x`, iy
ϕ´,γ`i,B,r,ϕ`

ÝÝÝÝÝÝÝÝÝÝÑ x`1, iy.

For all autonomous transition `
ϕ´,x“c,7,r
ÝÝÝÝÝÝÝÑ `1 of A and i ď K:

– if `1 “ `f then there is an autonomous transition x`, iy
ϕ´,x“c`i,7,H
ÝÝÝÝÝÝÝÝÝÑ `f ;

– else if r “ H there is an autonomous transition x`, iy
ϕ´,x“c`i,7,H
ÝÝÝÝÝÝÝÝÝÑ x`1, iy;

– else if r “Ó and c` i ď K then there is an autonomous transition

x`, iy
ϕ´,x“c`i,7,H
ÝÝÝÝÝÝÝÝÝÑ x`1, c` iy.

Observe that A1 has no more autonomous transitions with reset.
For sake of simplicity, let x`f , iy denote `f for all i. SD: where do the locations
x`f , iy come from? By construction I think there is only `f

Let us establish the correctness of this transformation.

‚ Let ρ “ p`0, v0, x̄0, δ0q
ϕ´0 ,γ0,B0,r0,ϕ

`
0

ÝÝÝÝÝÝÝÝÝÝÑ p`1, v1, x̄1, δ1q ¨ ¨ ¨
ϕ´n´1,γn´1,Bn´1,rn´1,ϕ

`
n´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

p`n, vn, x̄n, δnq ¨ ¨ ¨ be a run of A.
For all k define r1k by r1k “ H if Bk “ 7 and r1k “ rk otherwise.
For all k define ck, dk by c0 “ d0 “ 0 and for k ą 0:
– if rk “ H then ck “ ck´1;
– if Bk ‰ 7, rk “ H and γk ‰ x ą C then dk “ dk´1;
– if Bk ‰ 7, rk “ H and γk “ x ą C then dk “ 0;
– if Bk ‰ 7 and rk “Ó then ck “ dk “ 0;
– if Bk “ 7 and rk “ H then dk “ dk´1;
– if Bk “ 7, rk “Ó and γk “ x “ c then ck “ dk “ dk´1 ` c

The integer ck represents the difference between the values of the clock in the
kth states of the original and simulating runs while dk represents how ck has to
be taken into account in the kth state of the simulating run. In general, dk is

17

equal to ck except when the original run goes through a guard x ą C in which
case the difference between the clock values is irrelevant.

Then ρ1 “ px`0, 0y, v0, x̄0, δ0q
ϕ´0 ,γ0`d0,B0,r

1
0,ϕ

`
0

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ px`1, d1y, v1, x̄1 ` c1, δ1q ¨ ¨ ¨
ϕ´n´1,γn´1`dn´1,Bn´1,r

1
n´1,ϕ

`
n´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ px`n, dny, vn, x̄n ` cnq is a run of A1. The main
point is that all transitions in ρ can be mimicked due to the choice of K.

‚ Conversely let ρ1 “ px`0, 0y, v0, x̄
1
0, δ0q

ϕ´0 ,γ0,B0,r
1
0,ϕ

`
0

ÝÝÝÝÝÝÝÝÝÝÑ px`1, d1y, v1, x̄
1
1, δ1q ¨ ¨ ¨

ϕ´n´1,γn´1`dn´1,Bn´1,r
1
n´1,ϕ

`
n´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ px`n, dny, vn, x̄
1
n, δnq ¨ ¨ ¨ be a run of A1.

For all k define rk as the original reset that associated with the creation of the
transition labelled by γk ` dk´1, An, r

1
k. SD: Shouldn’t it be Bk? I think we are

also missing ϕ´k and ϕ`k .
For all k define ck by c0 “ 0 and for k ą 0:

– if rk “ H then ck “ ck´1;
– if rk “ r1k “Ó then ck “ 0;
– if Bk “ 7, rk “Ó and γk “ x “ c then ck “ ck´1 ` c.

Then ρ “ p`0, v0, x̄
1
0´c0, δ0q

ϕ´0 ,γ0,B0,r0,ϕ
`
0

ÝÝÝÝÝÝÝÝÝÝÑ p`1, v1, x̄
1
1´c1q ¨ ¨ ¨

ϕ´n´1,γn´1,Bn´1,rn´1,ϕ
`
n´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

p`n, vn, x̄
1
n ´ cn, δnq ¨ ¨ ¨ is a run of A.

We now establish the second assertion of the proposition. Consider the au-
tomaton An described below. Here Act is a singleton and so we omit the la-
bels of the actions. SD: we should take care, since the compact notation used
below over edges has not been used in the examples of Fig. 1 and 2. Here
Act is a singleton and we compactly represent edge inscription by ppi, k, Óq for
ppi, x “ k,Act, Ó, true. Note that all transitions are autonomous and have a reset

¨ ¨ ¨

p1, 1Ó

 p1, 0Ó

0Ó

0Ó

p2, 2Ó

 p2, 0Ó

pn, 2
n´1
Ó

 pn, 0Ó

0Ó

0Ó

Given a valuation v of the atomic propositions, let us define the integer zpvq P
r0, 2nr by: zpvq “

ř

iďn 2i´11vppiq“J. SD: I think before we wrote v |ù pi instead
of vppiq “ J.
Observe that z is a one-to-one mapping. Then An accepts the timed paths
starting with some initial valuation v such that the first action occurs not earlier
than zpvq.

Assume by contradiction that there exists A P Anrag with LpAq “ LpAnq such
that p|Aut |`1q|Synch| ă 2n. Consider 2n accepted timed paths σv starting with
the 2n possible valuations v such that the first action occurs at time zpvq. Let

tv “ `v
ϕ´v ,γv,Bv,rv,ϕ

`
v

ÝÝÝÝÝÝÝÝÝÝÑ `1v be the synchronized transition in A corresponding
to this action and, x̄v be the clock valuation when entering `v. Observe that
this clock valuation is either 0 or a time constant occurring in an autonomous
transition. Due to the assumption, there are two different valuations v and v1

with tv “ tv1 and x̄v “ x̄v1 . W.l.o.g. let zpvq ă zpv1q. Consider a timed path
starting with valuation v1 and whose first action occurs at time zpvq. Such a
path is accepted by A using the accepting run for σv1 up to `v1 “ `v with clock

18

valuation x̄v1 “ x̄v and then going on with the suffix of the accepting run for σv.
However since zpvq ă zpv1q such a path does not belong to LpAnq.

[\

Proposition 3. There exists an algorithm operating in quadratic time that takes
as input A P Anrag and outputs A1 P Ancg with LpA1q “ LpAq.

Proof. Let A P Anrag . Observe that if a timed path visits twice the same au-
tonomous transition without in the meantime visiting a synchronized transition,
then it will infinitely cycles visiting only autonomous transitions (i.e. diverging).
Let K be the number of autonomous transitions. A1 is built as follows.
The set of locations of A1 is L1 “ tp`, iq | 0 ď i ď K^ ` P Lzt`fuuYt`f , `Ku with
initial location p`0, 0q and final location `f (with its single looping transition).

For all synchronized transition `
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ `1 of A and i ď K:

– if `1 “ `f then there is a synchronized transition p`, iq
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ `f ;

– otherwise there is a synchronized transition p`, iq
ϕ´,γ,B,r,ϕ`

ÝÝÝÝÝÝÝÝÑ p`1, 0q.

For all autonomous transition `
ϕ´,x“c,7,H
ÝÝÝÝÝÝÝÝÑ `1 of A and i ď K:

– if i “ K then there is an autonomous transition p`, iq
ϕ´,x“c,7,H
ÝÝÝÝÝÝÝÝÑ `K;

– else if `1 “ `f then there is an autonomous transition p`, iq
ϕ´,x“c,7,H
ÝÝÝÝÝÝÝÝÑ `f ;

– otherwise there is an autonomous transition p`, iq
ϕ´,x“c,7,H
ÝÝÝÝÝÝÝÝÑ p`1, i` 1q.

By construction, there is no cycle of autonomous transitions in A1.
A timed path of A1 that does not visit `K provides a timed path of A by omitting
the second component of the locations while the only timed paths of A that
cannot be mimicked by A1 are the diverging ones. Furthermore the “partial”
simulation of such paths by A1 leads to a deadlock location.

[\

19

