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Abstract. Timed Automata are a well-known formalism for specifying timed
behaviours. In this paper we are concerned with Timed Automata for the specifi-
cation of timed behaviour of Continuous Time Markov Chains (CTMC), as used
in the stochastic temporal logic CSLTA. A timed path formula of CSLTA is speci-
fied by a Deterministic Timed Automaton (DTA) that features two kinds of transi-
tions: synchronizing transitions (triggered by CTMC transitions) and autonomous
transitions (triggered when a clock reaches a given threshold). Other definitions
of CSLTA are based on DTAs that do not include autonomous transitions. This
raises the natural question: do autonomous transitions enhance expressiveness
and/or conciseness of DTAs? We prove that this is the case and we provide a syn-
tactical characterization of DTAs for which autonomous transitions do not add
expressive power, but allow one to define exponentially more concise DTAs.

1 Introduction

Stochastic logics like CSL [5] allow one to express assertions about the probability of
timed executions of Continuous Time Markov Chains (CTMC). In CSL, model execu-
tions (typically called “paths”) are specified by two operators: timed neXt and timed
Until. CSL has been extended in several ways to include action names (name of the
events in the paths) and path properties specified using regular expressions leading to
asCSL [6], or rewards, leading to CSRL [7]. Note that asCSL can specify rather com-
plex path behaviour, expressed by regular expressions, but the timing requirements can-
not be mixed within these expressions. GCSRL [14] is an extension of CSRL for model
checking of CTMC generated by Generalized Stochastic Petri nets (GSPN) [1] taking
into account both stochastic and immediate events.

Automata with time constraints have been used to specify path-based performance
indices [16] for Stochastic Activity Networks [15], while hybrid automata have been
used to define rather complex forms of passage of time [2] for GSPN, as well as generic
performance properties [9] that are estimated using simulation. The use of a Deter-
ministic Timed Automaton (DTA) in the stochastic logic CSLTA [12] allows to specify
paths in terms of state propositions and action names associated to CTMC states and
transitions (respectively) and in terms of the timed behaviour of portions of the paths.
The CTMC actions are the input symbols for the DTA, and two types of transitions
are distinguished: synchronizing transitions that read the input symbols of the CTMC,



2 S. Donatelli, S. Haddad

and autonomous transitions, that are taken by the DTA when the clock reaches some
threshold, with priority over synchronizing ones. The determinism requirement ensures
that the synchronized product of the DTA and the CTMC is still a stochastic process
as all sources of non-determinism are eliminated. CSLTA strictly includes [12] CSL
and asCSL. Various extensions of CSLTA have been presented in the literature. DTA
with multiple clocks have been used for defining an extension of CSLTA [10, 13] but
autonomous transitions are not allowed. In this paper we concentrate on single-clock
CSLTA with autonomous transitions, as in the original definition of CSLTA. Indeed the
single-clock limitation is a necessary requirement to reduce the CSLTA model-checking
problem to the (steady-state) solution of a Markov Regenerative Process, which is the
largest class of stochastic processes for which we can compute an exact numerical solu-
tion, supported by efficient solution tools [4, 3]. The single-clock setting allows also to
investigate whether the definition of CSLTA in [10, 13], once limited to a single clock,
is equivalent to the original definition of CSLTA (introduced in [12]).
Paper contributions. This paper addresses two research questions. The first one (Sec-
tion 3) is whether the presence of autonomous transitions enhances the expressiveness
of DTAs both in terms of timed languages (qualitative comparison) and in terms of
probability of accepting the random path of a CTMC (quantitative comparison). We es-
tablish that autonomous transitions do enhance expressiveness. Given that eliminating
autonomous transitions from a DTA is not always feasible, the second question (Sec-
tion 4) is which are the uses of autonomous transitions that can be emulated by DTA
w/o autonomous transitions. We have identified a hierarchy of subclasses of DTA in
which the presence of autonomous transitions does not extend expressiveness (and au-
tonomous transitions can therefore be eliminated), but that exponentially improves the
DTA size. Only the most interesting proofs and properties have been included in this
paper. Missing proofs and the full set of properties can be found in [11].

2 Context and definitions

Although our motivations rely on the acceptance of paths of CTMCs featuring atomic
propositions that label states and actions that label transitions, we set our work in the
general context of acceptance of timed paths, where the i ` 1-th state of a timed path
is identified by vi (we count indices from 0), the boolean evaluation of the atomic
propositions in that state. δi indicates a delay, or a sojourn time in state i, and τi indicates
the time elapsed until exiting state i. A timed path leaves state vi with action ai after
a sojourn time in the state equal to δi. The elapsed time can be computed as: τi “
δi ` τi´1, with τ´1 “ 0.

Definition 1 (Timed Path). Given a set AP of atomic propositions and a set Act of
actions, a timed (infinite) path is a sequence pv0, δ0q

a0
ÝÑ pv1, δ1q

a1
ÝÑ ¨ ¨ ¨ pvi, δiq

ai
ÝÑ

¨ ¨ ¨ such that for all i P N : vi P tJ,Ku
AP , ai P Act , δi P Rě0.

Example 1 (Timed path). In writing timed paths we indicate functions vi as the set of
elements in AP that evaluate to J. Given AP “ tp, qu and Act “ ta, b, cu, a timed
path ptp, qu, 0.5q a

ÝÑ ptqu, 1.3q
b
ÝÑ ¨ ¨ ¨ , is interpreted as the system staying in a state

that satisfies p ^ q in the time interval r0, 0.5r, at time 0.5 action a takes place and the
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system moves to a state that satisfies  p ^ q, stays there for 1.3 time units and then
action b takes place (at the global time τ “ 1.8).

DTA definition includes a clock x and two types of constraints: boundary ones, BoundC
= tx “ α, α P Nu and inner ones, InC = tα ’ x ’1 βu, with ’,’1P tă,ď, u, α P N,
and β P N Y t8u. In the sequel, C is the largest time constant occurring in a DTA.
Before formally defining the syntax and semantic of a DTA (Definitions 2, 3 and 4),
let us introduce its main ingredients. During the execution of a stochastic discrete event
system (e.g. a Markov chain) that can be represented by a timed path, one manages
(1) an index i of the timed path (2) a location, say `, is matched with the current state
of the path indexed by i, and (3) a delay δ ď δi until the next state change from i to
i`1. The function Λmapping the set of locations to the set of boolean expressions over
atomic propositions, BAP , restricts the possible matchings since the valuation vi must
satisfy the formula Λp`q. This matching evolves in three ways depending on the delay
δ, elapsed until the next transition pvi, δiq

ai
ÝÑ pvi`1, δi`1q of the path.

– Either after some delay δ1 ď δ, there is an outgoing autonomous transition from `
whose boundary condition (say x “ α) is satisfied and such that vi fulfills Λp`1q
where `1 is the target location of the transition. Then `1 is matched with i, delay δ
becomes δ ´ δ1, the clock x is increased by δ1 and the index i is unchanged.

– Else if there is a synchronizing transition outgoing from ` such that (1) after time
δ has elapsed its inner condition (say α ’ x ’1 β) is satisfied, (2) the action ai
belongs to the subset of actions associated with the synchronizing transition, and
(3) vi`1 satisfies Λp`1q where `1 is the target location of the transition. Then `1 is
matched with i ` 1, the new delay δ is set to δi`1, the clock x is either increased
by δ or reset depending on the transition, and the index becomes i` 1.

– Otherwise there is no possible matching and the timed path is rejected by the DTA.

In the first two cases above, when `1 “ `f , the final location, the timed path is accepted
by the DTA whatever its future. This is ensured due to Λp`f q “ J and the existence
of the unique (looping) synchronizing transition from `f with no timing and action
conditions. Observe that the synchronization may last forever without visiting `f : in this
case the timed path is rejected. Furthermore the synchronization of the stochastic system
with the DTA should not introduce non determinism. So (1) the formulas associated
with the initial locations are mutually exclusive, (2) synchronizing transitions outgoing
from the same location are never simultaneously enabled, (3) autonomous transitions
outgoing from the same location are never simultaneously enabled, and (4) autonomous
transitions have priority over synchronizing transitions.

Definition 2 (DTA). A single-clock Deterministic Timed Automaton with autonomous
transitions is defined by a tuple A “ xL,Λ, L0, `f ,AP , Synch, Auty where L is a finite
set of locations, L0 Ď L is the set of initial locations, `f P L is the final location,
Λ : LÑ BAP is a function that assigns to each location a boolean expression over the
set of propositions AP , Synch Ď LˆInCˆ2Actˆ

 

H, Ó
(

ˆL is the set of synchronizing
transitions, and Aut Ď LˆBoundCˆ7ˆ

 

H, Ó
(

ˆL is the set of autonomous transitions,

with E “ SynchY Aut. ` γ,B,r
ÝÝÝÑ `1 denotes the transition p`, γ,B, r, `1q.

Furthermore A fulfills the following conditions.
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– Initial determinism. @`, `1 P L0, Λplq ^ Λpl
1q ô K.

– Determinism on actions. @B,B1 Ď Act s.t . B XB1 ‰ H,@`, `1, `2 P L,

if ` γ,B,r
ÝÝÝÑ `1 and ` γ1,B1,r1

ÝÝÝÝÝÑ `2 then Λp`1q ^ Λp`2q ô K or γ ^ γ1 ô K.
– Determinism on autonomous transitions. @`, `1, `2 P L,

if `
x“α,7,r
ÝÝÝÝÝÑ `1 and `

x“α1,7,r1

ÝÝÝÝÝÝÑ `2 then Λp`1q ^ Λp`2q ô K or α ‰ α1.
– Conditions on the final location `f . Λp`f q “ J and p`f ,J,Act ,H, `f q P Synch.

Given a clock constraint γ and a clock valuation x̄, x̄ |ù γ denotes the satisfaction of
γ by x̄. Similarly given a boolean formula ϕ and a valuation of atomic propositions v,
v |ù ϕ denotes the satisfaction of ϕ by v.

p
`0

p
`1

p
`2

 p
^q

`3 `f Act “ GZB ZN

x ď 1; aÓ1Ó

b

1c

2d

x ď 3

x ă 1;G

2Ó

x ě 1

x ă 1;N

x ă 1

2Ó

Fig. 1. Some examples of DTA.

Example 2 (DTA). Fig. 1, left, shows a DTA with five locations: `0, `1, `2, `3 and `f .
There is a single initial location, `0. Autonomous transitions are depicted as dotted arcs,
while synchronizing are depicted as solid arcs. For readability we omit: 1) the symbol
7 on autonomous transitions; 2) the set r when there is no reset; 3) Act if a transition
accepts all actions; 4) trivially true guards (like x ě 0) and boolean conditions ; 5) the
name x of the clock in x “ α guards. As a result an autonomous transition is depicted as
either l α,Ó

ÝÝÑ l1, as between `1 and `0, or as l α
ÝÑ l1, as between `0 and `2. We informally

write “a transition with reset” or “a transition without reset” to indicate the condition
r “Ó and r “ H respectively. The arc from `0 to `1 represents a synchronizing transi-
tion with a clock reset. The arc from `0 to `2 represents an autonomous transition to be
taken when the clock is equal to 1, with no clock reset. Boolean expression of locations
are: p, associated with `0, `1, `2 and p p^ qq, associated with `3.

Let us describe a possible run of this DTA. At time 0.5, it goes from `0 to `1 by
performing action a and resets x. Then at time 1.5, it autonomously comes back to
location `0 and clock x is again reset. Then it autonomously goes to `2 at time 2.5 and
later to `f at time 3.5. While irrelevant, x has current value 2.

Definition 3 (Run of A). A run of a DTA A is a sequence: p`0, v0, x̄0, δ0q
γ0,B0,r0
ÝÝÝÝÝÑ

p`1, v1, x̄1, δ1q ¨ ¨ ¨ p`i, vi, x̄i, δiq
γi,Bi,ri
ÝÝÝÝÝÑ ¨ ¨ ¨ such that for all i P N: `i P L, l0 P

L0, vi P tJ,Ku
AP , δi P Rě0:

`i
γi,Bi,ri
ÝÝÝÝÝÑ `i`1 P E , vi |ù Λp`iq , x̄i ` δi |ù γi , x̄i`1 “

#

0 if r “Ó
x̄i ` δi otherwise
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To enforce priority of autonomous transitions,
let x̄7 “ mintα | D`i

x“α,7,r
ÝÝÝÝÝÑ ` P E ^ x̄i ď α^ vi |ù Λp`qu (minpHq “ 8)

If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi ă x7.

A run is therefore a path in the DTA where the visited locations are coupled with a
valuation of propositions, a clock value and a delay in a consistent way w.r.t. the DTA.

Example 3 (DTA run). Given that v is described in terms of the subset of AP that eval-

uate to J, a run for the DTA of Fig. 1, left, is: 0:p`0, tpu, x̄0 “ 0.0, δ0 “ 0.2q
xď1,tau,Ó
ÝÝÝÝÝÝÑ

1:p`1, tp, qu, 0.0, 1.0q
x“1,7,Ó
ÝÝÝÝÝÑ 2:p`0, tp, qu, 0.0, 1.0q

x“1,7,H
ÝÝÝÝÝÑ 3:p`2, tpu, 1.0, 1.0q

x“2,7,H
ÝÝÝÝÝÑ

4:p`f , tpu, 2.0, 3.1q
xě0,Act,H
ÝÝÝÝÝÝÝÑ 5:p`f , tqu, 5.1, 0.5q

xě0,Act,H
ÝÝÝÝÝÝÝÑ 6:p`f , tqu, 5.6, δq ¨ ¨ ¨

A timed path σ is recognized by a run ρ of A such that the occurrences of the actions
in σ are matched by the synchronizing transitions in ρ. This requires to define a mapping
to match the points in the paths in which synchronizing transitions take place. This can
be done by identifying a strictly increasing mapping for the indices of the timed path σ
to the subset of the indices of the run ρ that correspond to a synchronizing transition.
Note that, due to determinism, if such a run exists, it is unique.

Definition 4 (Path recognized by A and LpAq ). Let σ “ pv0, δ0q
a0
ÝÑ pv1, δ1q

a1
ÝÑ

¨ ¨ ¨ pvi, δiq
ai
ÝÑ ¨ ¨ ¨ be a timed path and ρ “ p`0, v10, x̄0, δ

1
0q

γ0,B0,r0
ÝÝÝÝÝÑ ¨ ¨ ¨ p`i, v

1
i, x̄i, δ

1
iq

γi,Bi,ri
ÝÝÝÝÝÑ ¨ ¨ ¨ be a run of a DTA A. Then σ is recognized by ρ if there is a strictly
increasing mapping κ : NÑ N (extended to κp´1q “ ´1q, such that for all i P N

– ai P Bκpiq and δi “
ř

κpi´1qăhďκpiq δ
1
h

– @h, κpi´ 1q ă h ď κpiq ñ v1h “ vi and h R κpNq ñ Bh “ 7
A timed path σ is accepted by A if σ is recognized by a run ρ and ρ visits `f .
The language LpAq of A is the set of the timed paths σ accepted by A.

Example 4 (Path recognized by a run). A timed path σ“0:pp, 0.2q
a
ÝÑ 1:ptp, qu, 6.1q

b
ÝÑ

2 : pq, 0.5q
d
ÝÑ 3 :: pp, δq ¨ ¨ ¨ is recognized by the run of Example 3 with mapping κ:

κp0q “ 0, κp1q “ 4, κp2q “ 5, κp3q “ 6, . . .. The run visits `f and the path is accepted.

We consider timed paths generated by a CTMC with state properties and actions.

Definition 5 (CTMC representation). A continuous time Markov chain with state and
action labels is represented by a tuple M “ xS, s0,Act ,AP , lab,Ry, where S is a finite
set of states, s0 P S the initial state, Act is a finite set of action names, AP is a finite set
of atomic propositions, lab : S Ñ tJ,KuAP is a state-labeling function that assigns to
each state s a valuation of the atomic propositions, R Ď S ˆAct ˆ S Ñ Rě0 is a rate

function. If λ “ Rps, a, s1q ^ λ ą 0, we write s a,λ
ÝÝÑ s1.

We assume that each state has at least one successor: for all s P S, exists a P Act,
s1 P S such that Rps, a, s1q ą 0. CTMC executions lead to timed paths, and a CTMC
is a generator of a random path. We define by PrMpAq the probability that the random
path of M is accepted by A (probability measure of all paths accepted by A as in [8]).
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3 Autonomous transitions and expressiveness

We indicate with A the whole family of automata of Definition 2 and with Ana the
subclass of automata with no autonomous transitions: Ana “ tA P A | AutpAq “ Hu
The comparison of the expressive power of A and Ana is both qualitative (based on the
timed path language) and quantitative (based on accepting probabilities).

Definition 6. Let A1 and A2 be families of DTA. Then:
– A2 is at least as expressive as A1 w.r.t. language, denoted A1 ăL A2,

if for all A1 P A1 there exists A2 P A2 such that LpA2q “ LpA1q;
– A2 is at least as expressive as A1 w.r.t. Markov chains, denoted A1 ăM A2,

if for all A1 P A1 there exists A2 P A2

such that for all Markov chains M, PrMpA2q “ PrMpA1q.

As usual, we derive other relations between such families. A1 and A2 are equally
expressive w.r.t. language (resp. Markov chains), denoted A1 „L A2 (resp. A1 „M A2)
if A1 ăL A2 and A2 ăL A1 (resp. A1 ăM A2 and A2 ăM A1). A2 is strictly more
expressive than A1 w.r.t. language (resp. Markov chains), denoted A1 ňL A2 (resp.
A1 ňM A2) if A1 ăL A2 and not A2 ăL A1 (resp. A1 ăM A2 and not A2 ăM A1).

Observe that by definition A1 ăL A2 implies A1 ăM A2. We now establish that
autonomous resetting transitions extend the expressive power of DTA w.r.t. Markov
chains (Ana ňM A). The weaker result w.r.t. language (Ana ňL A) is shown in [11].

Theorem 1. There exists A P A such that for all A1 P Ana there exists a Markov chain
M with PrMpA1q ‰ PrMpAq.

Before proving this theorem, we prove some intermediate properties. We first establish
a kind of 0-1 law for DTA in Ana and Markov chains. In order to obtain this interme-
diate result, we introduce some objects. Simple chains are Markov chains with a single
action, no atomic proposition (or equivalently with the same valuation for all states)
and such that each state s has a single successor state scpsq reached with rate λs. W.r.t.
the acceptance probability of simple chains, we can consider DTAs without actions and
atomic propositions. Moreover we add to each DTA an additional garbage location and
we split the transitions, so that, w.l.o.g. one can assume that for each location ` of a
DTA in Ana, there are C ` 1 outgoing transitions: t` i´1ďxăi,ri

ÝÝÝÝÝÝÝÑ scip`q | 1 ď i ď

CuY t`
xěC,rC`1
ÝÝÝÝÝÝÑ scC`1p`qu where C is the maximal constant occurring in the DTA.

The shape of the guards is not a restriction in the context of Markov chains. For all
clock valuations x̄, the clock valuation scp`, x̄q is defined by:

– Let i “ minpj | j P t1, . . . , Cu ^ x̄ ă jq with minpHq “ C ` 1;
– If ri “Ó then scp`, x̄q “ 0 else scp`, x̄q “ x̄.

Observe the difference between sci, defined at the syntactical level, which maps a lo-
cation to its ith successor and sc, defined at the semantical level, which maps a pair
consisting in a location and a clock valuation to the new clock valuation obtained by
firing the single transition enabled w.r.t. the clock valuation.

We also define the region (multi-)graph GA “ pV,Eq of such a DTA A as follows.
– V , the set of vertices, is defined by V “ tp`, iq | ` P L^ 0 ď i ď C ` 1u;
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– Let p`, iq be a vertex, then for all j s.t. maxpi, 1q ď j ď C ` 1, there is a transition
from p`, iq to pscjp`q, j1q labelled by j with j1 “ 0 if rj “Ó and j1 “ j otherwise.

One interprets GA as follows. The vertex p`, 0q corresponds to the region defined by
location ` with clock valuation 0. The vertex p`, 1q corresponds to the region defined by
location ` with clock valuation in s0, 1r. The vertex p`, iq for 1 ă i ď C corresponds to
the region defined by location ` with clock valuation in ri´ 1, ir. The vertex p`, C ` 1q
corresponds to the region defined by location ` with clock valuation in rC,8r. The
transition outgoing from p`, iq labelled by j corresponds to the combination of time
elapsing to enter the region p`, jq followed by an action of the Markov chain, leading to
either p`1, jq or to p`1, 0q, in case of reset.

Given s a state of a Markov chain, ` a location of DTA, and x̄ a clock valuation,
pps, `, x̄q denotes the probability of acceptance when the Markov chain starts in s and
the DTA starts in ` with clock valuation x̄. In particular for a DTA A applied to a
Markov chain M, PrMpAq “ pps0, `0, 0q where s0 is the initial state of M and `0 is
the initial location of A such that labps0q |ù Λp`0q.

Lemma 1. Let s be a state of a simple Markov chain M and ` be a location of a DTA in
Ana. Then the function that maps t to pps, `, tq is continuous and for i´ 1 ď t ď i ď C
it is equal to:

ż i

t

λse
´λspτ´tqppscpsq, scip`q, scp`, τqqdτ`

ż 8

C

λse
´λspτ´tqppscpsq, scC`1p`q, scp`, τqqdτ

`
ÿ

iăjďC

ż j

j´1

λse
´λspτ´tqppscpsq, scjp`q, scp`, τqqdτ

(1)

The above formula represents the probability of acceptance when the Markov chain
starts in s and the DTA starts in ` with clock valuation t, with i ´ 1 ď t ď i ď C,
therefore within the region pl, iq. This probability is computed in terms of the probabil-
ity of having the next CTMC transition within the region pl, iq itself, or any later region
pl, jq, multiplied by the probability of acceptance from the state reached by accepting
the CTMC transition.

Proof. Define pnps, `, tq as the probability that the run associated with a random timed
path of M starting in s when the DTA starts in ` with clock valuation t reaches location
`f after performing n actions. Then for ` ‰ `f , p0ps, `, tq “ 0 and p0ps, `f , tq “ 1.
Assume that pnps, `, tq is continuous (and so measurable) for all s and `. Then the
following equation holds for i´ 1 ď t ď i ď C:

pn`1ps, `, tq “

ż i

t

λqe
´λspτ´tqpnpscpsq, scip`q, scp`, τqqdτ

`
ÿ

iăjďC

ż j

j´1

λse
´λqpτ´tqpnpscpsq, scjp`q, scp`, τqqdτ

`

ż 8

C

λse
´λspτ´tqpnpscpsq, scC`1p`q, scp`, τqqdτ
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Observe that for τ ą C, pnpscpsq, scC`1p`q, scp`, τqq is constant since if there is a reset
then scp`, τq “ 0 and if there is no reset then scp`, τq “ τ ą C and so the valuation of
the clock is irrelevant. Thus the equation can be rewritten as follows.

pn`1ps, `, tq “

ż i

t

λse
´λspτ´tqpnpscpsq, scip`q, scp`, τqqdτ

`
ÿ

iăjďC

ż j

j´1

λse
´λspτ´tqpnpscpsq, scjp`q, scp`, τqqdτ

` e´λspC´tqpnpscpsq, scC`1p`q, scp`, C ` 1qq

Observe that maxp1, λsqe
´λsτ is uniformly continuous. So pick η1 ą 0 such that for

all τ ă τ 1 ď τ ` η1 maxp1, λsq|e
´λsτ ´ e´λsτ

1

| ď ε
3C . Let η “ minpη1, ε

3λs
q. Then

for all t ă t1 ď t ` η, one bounds |pn`1ps, `, tq ´ pn`1ps, `, t
1q| by the sum of three

terms using the above equation to establish that |pn`1ps, `, tq´pn`1ps, `, t
1q| ď ε. Thus

pn`1ps, `, tq is continuous. When t ą C, pn`1ps, `, tq is constant and so continuous.
Observe that pps, `, tq “ limnÑ8 pnps, `, tq. So the mapping pps, `, tq is measurable
as a limit of continuous mappings. Thus Equation 1 holds for i ´ 1 ď t ď i ď C:
Repeating the same argument as the one for the inductive case yields the result. When
t ą C, pps, `, tq is constant and so continuous.

Proposition 1. Let A P Ana and z P r0, 1s such that for all Markov chains M,
PrMpAq “ z, then z P t0, 1u.

Proof. We will even prove this result when restricting the quantification to Markov
chains with a single action and a single valuation of propositions for all states and a
single successor for all states. Thus we can omit propositions and actions in the DTA
and only consider simple chains.
Let A be an automaton that satisfies the hypothesis. We want to establish that for all
configurations p`, tq in some region of GA reachable from p`0, 0q, and for all states s
of a simple Markov chain, pps, `, tq “ z. We do this by induction on the distance from
the initial region in the region graph and then we prove that z is either 0 or 1. The basis
case of the induction corresponds to the assumption PrMpAq “ z, for all M.
For the inductive step we assume that for a given p`, tq, and for all states s of a simple
chain, pps, `, tq “ z and we prove that the pps1, `1, t1q “ z, for all ps1, `1, t1q reachable
in one step from ps, `, tq.
Let M be an arbitrary simple chain and define Mλ as the simple chain with a single
transition outgoing from its initial state to the initial state of M whose rate is λ. Let s
be the initial state of Mλ.
By assumption, pps, `, tq “ z. Define fpτq by ppscpsq, scjp`q, scp`, t`τqqwhen j´1 ă
t ` τ ď j ď C and by ppscpsq, scC`1p`q, scp`, t ` τqq when t ` τ ą C. Equation 1
can be rewitten as pps, `, tq “

ş

τě0
λe´λτfpτqdτ . Since for all λ, PrMλ

pAq “ z,
the Laplace transform of fpτq is equal to z

λ , i.e. the Laplace transform of the constant
function z. By the theorem of unicity of Laplace transforms, this entails that fpτq “ z
except for a set of null measure. However, consider a successor region p`1, iq of location
` with clock valuation t1.
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‚ Either i “ 0 (meaning that there has been a reset) and the region has a single point
reached with non null probability. So ppscpsq, `1, 0q “ z.
‚ Or i ą 0, so by Lemma 1, ppscpsq, `1, t1q is continuous inside the region w.r.t. t1 and
thus everywhere equal to z.
So the induction is established. So if a region of `f is reachable in the region graph,
then z “ 1. Otherwise `f is not reachable implying that no run is accepting, and thus
z “ 0.

We can now prove Theorem 1 (Ana ňM A).
Proof of Theorem 1. The DTA A in Fig. 1 (lower right) has an action set reduced to a
singleton tau (omitted in the figure) and an empty set of propositions. The language of
A is the set of timed paths whose first action occurs at time τ P r2i, 2i ` 1r for some
i P N. Assume by contradiction that there exists A1 P Ana such that for all Markov
chain M, PrMpA1q “ PrMpAq.
Pick an arbitrary Markov chain M and define Mλ as the Markov chain which has
a single transition from its initial state to the initial state of M with rate λ. It is
routine to check that PrMλ

pAq “ 1´e´λ

1´e´2λ (as only the first transition of Mλ is
relevant) and, consequently, limλÑ0 PrMλ

pAq “ 1
2 and, given the hypothesis, also

limλÑ0 PrMλ
pA1q “ 1

2 .
PrMλ

pA1q can be decomposed as p1,λ ` p2,λ where p1,λ is the probability to accept
the random timed path and that the first action takes place at most at time C and p2,λ
is the probability to accept the random timed path and that the first action takes place
after C, where C is the maximal constant of A1. But limλÑ0 p1,λ “ 0 and therefore
limλÑ0 p2,λ “

1
2 .

On the other hand, let `1 be the location of A1 reached from its initial location when
the value of the clock is greater than C, its maximal constant. There must be one, if
not limλÑ0 p2,λ “ 0, which contradicts what derived above. We want to design an
automaton A2 equivalent to A1 when reaching `1 with clock value greater than C: any
timed path is accepted by A2 iff it is accepted by A1 when starting in `1 with clock
valuation greater than C. For the construction we duplicate the automaton and merge
the final location, the initial location is location `1 of the first copy, and in the first copy
we add to the guard of all transitions the formula x ą C and redirect the transitions that
reset the clock to the corresponding location of the second copy.

But then limλÑ0 p2,λ “ PrMpA2q. Since limλÑ0 p2,λ “
1
2 and M is arbitrary,

this contradicts Proposition 1 applied to A2.
The DTA in Fig. 1 (upper right) shows that the above counter-example is of prac-

tical interest. Consider a periodic system that cycles over phases of duration 2, each
split in two sub-phases of duration 1 (for example a running and a reset phase) and that
can experience good (G), bad (B), and neutral (N) actions, generated from a CTMC of
arbitrary complexity. The depicted DTA allows one to compute the probability of the
CTMC behaviours characterized by a good action in the running sub-phase, given that
in the preceding phases no bad action has happened in the running phase. Any action is
instead allowed during the reset phase.
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4 Autonomous transitions and conciseness

We have established that there exists DTAs that cannot be translated into DTAs without
autonomous transitions (Ana ňM A). We now investigate whether restricted forms
of use of autonomous transitions are as expressive as Ana. To this goal we identify two
additional subclasses of A, namely Anra and Arc, characterized by a limited presence of
autonomous transitions and that are in the following subset relationship: Ana Ď Anra Ď
Arc Ď A.
Restricted cycles Arc is the subclass of automata A P A in which all cycles of A

including an autonomous transition with a reset also include a synchronizing tran-
sition p`, γ,B, r, `1q with r “Ó or γ “ px ą Cq.

No reset on autonomous transitions Anra is the subclass of automata A P Arc in
which there is no autonomous transition that resets the clock: Anra “ tA P A |

p`, γ, 7, r, `1q P AutpAq ñ r “ Hu.
The DTA on the left of Figure 1 belongs to ArczAnra: indeed there is an autonomous
transition with reset (from `1 to `0), therefore it is not in Anra, but although the transition
is part of a cycle, that cycle also includes a synchronizing transition with reset (from
`0 to `1). Any DTA with no reset on autonomous transitions is an example of Anra.
The family Arc has been introduced to provide an accurate syntactical characterization
of DTA for which the autonomous transitions do not add expressive power. In some
sense, the DTA of Theorem 1 emphasizes the interest of Arc since the cycle performed
by the autonomous resetting transition points out what increases the expressive power.
Anra, which forbids clock resets on autonomous transitions, removes from CSLTA the
capacity of combining time constants depending on the time elapsed during (a portion
of) an execution. As observed in [12](section 4), clock resets on autonomous transitions
are what makes CSLTA more expressive than asCSL [6].
The following frame summarizes the results for A subclasses.

Ana „L Anra „L Arc ňM A
with Arc (Anra) exponentially more concise than Anra ( Ana, respectively)

We first establish that in Arc the autonomous resetting transitions can be mimicked in
Anra using additional finite memory, but with exponential cost.

Proposition 2. There exists an algorithm operating in exponential time that takes as
input A P Arc and outputs A1 P Anra with LpA1q “ LpAq.

Sketch of proof. The construction (1) duplicates locations by memorizing in the location
an integer value, (2) take into account this value for modifying the guard and the des-
tination of the outgoing transitions, and (3) deletes the reset of autonomous transitions.
This value corresponds to the accumulated value of constants in the guards of resetting
autonomous transitions since the last visit of a synchronizing transition with a reset or a
guard x ą C. The restriction over Arc ensures that this value is bounded by some finite
integerK. HoweverK may be exponential in the size of A and thus this transformation
is exponential.

The exponential blowup due to the duplication of locations is unavoidable:

Proposition 3. There exists a family tAnunPN in Arc such that the size of An is Opn2q
and for all A P Anra with LpAq “ LpAnq, p|Aut| ` 1q|Synch| ě 2n.
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We now prove that autonomous transitions in Anra can be eliminated, also at an
exponential cost.

Proposition 4. There exists an algorithm operating in exponential time that takes as
input A P Anra and outputs A1 P Ana with LpA1q “ LpAq.

Sketch of proof. The construction proceeds in two steps: at first, cycles of autonomous
transitions are eliminated, then all (linear) paths of autonomous transitions are elimi-
nated. The first construction is quadratic, as we duplicate each location to store in the
location the information on the number of autonomous transitions visited since the last
visit of a synchronized transition. The idea of this construction is that if a path exceeds
the number of autonomous transitions it must visit twice the same autonomous transi-
tion without visiting a synchronized transition and so diverges. In words: in the resulting
DTA, divergence has been transformed into deadlock. This finite memory has a linear
size w.r.t. the size of the original DTA.

The second step consists in eliminating autonomous transitions when there are no
such cycles. The key point is to select a location ` which is the source of the last au-
tonomous transition of a maximal path of such transitions. Thus every autonomous
transition outgoing from ` reaches some location `u where only synchronized transi-
tions are possible. Roughly speaking, the construction builds a synchronized transition
corresponding to a sequence of an autonomous transition followed by a synchronized
transition. However the construction is more involved since ` has to be duplicated in
order to check which autonomous transition can be triggered (or if no autonomous
transition can be triggered). This duplication also has an impact on the incoming transi-
tions of `. Repeating (at most |L| times) this transformation eliminates all autonomous
transitions. The exponential blowup due to the repetition of duplication of locations is
unavoidable:

Proposition 5. There exists a family of automata tAnunPN in Anra such that the size
of An belongs to Opn logpnqq and for all A P Ana with LpAq “ LpAnq the number of
its locations is at least 2n.

5 Conclusion and future work

We have established that autonomous transitions do enhance expressiveness of single
clock DTAs, and more precisely for the less discriminating case of the probability of
the random paths of a CTMC accepted by the DTA. This is the most relevant one for
comparing some variations of (1-clock) CSLTA defined in the literature. This enhanced
expressiveness is due to the possibility of associating clock resets with autonomous
transitions that occur in a cycle. The small counterexample of Proposition 1 can be seen
as the basic construct to study systems with periodic behaviours or periodic phases,
with clear practical implications. Even in DTA subclasses for which the autonomous
transitions do not enhance expressiveness, they do play a role in defining concise DTAs:
removing autonomous transitions may lead to an exponential blow up of the DTA.

We plan to investigate whether the precise identification of the characteristics that
enhance expressiveness and conciseness can help the identification of the best algo-
rithms for CSLTA model-checking, in particular for the component-based method [4].
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Moreover, following the suggestion by an anonymous reviewer, we intend to investi-
gate further consequences of Proposition 1, for example to study systems that include
probabilistic choices of autonomous transitions.
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Université Paris-Saclay, Cachan (France) ; Universita degli Studi di Torino, October 2019.
URL: https://hal.inria.fr/hal-02306021.

12. S. Donatelli, S. Haddad, and J. Sproston. Model checking timed and stochastic properties
with CSLTA. IEEE TSE, 35(2):224–240, 2009.

13. Y. Feng, J-P. Katoen, H. Li, B. Xia, and N. Zhan. Monitoring CTMCs by multi-clock timed
automata. In Computer Aided Verification, volume 10981 of Lecture Notes in Computer
Science, pages 507–526. Springer International Publishing, 2018.

14. M. Kuntz and B.R. Haverkort. GCSRL-a logic for stochastic reward models with timed and
untimed behaviour. In 8th PMCCS, pages 50–56, 2007.

15. J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic activity networks: Structure, be-
havior, and application. In Int. Workshop on Timed Petri Nets, pages 106–115. IEEE CS,
1985.

16. W.D. Obal II and W.H. Sanders. State-space support for path-based reward variables. Per-
formance Evaluation, 35:233–251, 05 1999.


