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Time in Discrete Event Systems

Intuitively

A timed execution of a discrete event system (DES) is a finite or infinite sequence
of events: e1, e2, . . . interleaved with (possibly null) delays.
(generated by some operational model)

More formally

A timed execution of a DES is defined by two finite or infinite sequences:

The sequence of states S0, S1, S2, . . . such that:

1 S0 is the initial state,

2 Si is the state of the system after the occurrence of ei.

The sequence of delays T0, T1, T2, . . . such that:

1 T0 is the time elapsed before the occurrence of e0,

2 Ti is the time elapsed between the occurrences of ei and ei+1.
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A Timed Execution
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Time in Petri Nets

What are the events?
Atomicity versus non atomicity

Beginning and end of transition firings

Transition firings

What are the delays?

Timing requirements for transition firing

Duration of transition firings
(asap requirement)

Appropriate age of tokens
(requirement on tokens)

Delay before firing
(requirement on delay between enabling and firing)
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A Duration-Based Semantic
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Requires to specify durations.

Problem: most of the time, states are not reachable markings of the net.
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A Token-Based Semantic
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Requires to specify age constraints.
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A Delay-Based Semantic

time
0 3

3 3

Requires to specify transition delays.
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Time Petri Net (TPN): Syntax

p2

p1

t1,[2,2]

t2,[1,4]

Places: logical part of the state

Tokens: current value of the logical part of the state also called configuration

Transitions: events, actions, etc.

Arcs: Pre and Post (logical) conditions of event occurrence

Time intervals: temporal conditions of event occurrence
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TPN: Transition Occurrence
Logical part (as in Petri nets)

The logical part of a configuration is a marking m,
i.e. a number of tokens per place m(p).

A transition is enabled
if the tokens required by the preconditions are present in the marking.

Timed part

There is an implicit clock per enabled transition t
and its value ν(t) defines the timed part of the state.

The clock valuation ν is the timed part of the configuration.

An enabled transition t is firable if its clock value lies in its interval [e(t), l(t)].

Notation: (m, ν)
t−→



12/49

Illustration of Transition Occurrence

p2

p1

t1,[2,2]

t2,[1,4]

0

0

The initial configuration is (p1 + 2p2, (0, 0))

Both t1 and t2 are enabled.

None is firable.
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Configuration Change by Time Elapsing

Time elapsing d

Time may elapse with updates of clocks
if every clock value does not go beyond the corresponding interval.

The marking is unchanged (m, ν)
d−→ (m, ν + d)

p2

p1

t1,[2,2]

t2,[1,4]

1.5

1.5

(p1 + 2p2, (0, 0))
1.5−−→ (p1 + 2p2, (1.5, 1.5))

Now t2 is firable.
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Configuration Change by Transition Firing
Transition firing t

Tokens required by the precondition are consumed and tokens specified by the
postcondition are produced.

Clocks values of newly enabled transitions are reset leading to valuation ν′.

Thus (m, ν)
t−→ (m− Pre(t) + Post(t), ν′)

A transition t′ is newly enabled if
1 t′ is enabled in m− Pre(t) + Post(t)

2 and t′ is disabled in m− Pre(t) or t′ = t

p2

p1

t1,[2,2]

t2,[1,4]

1.5

1.5

p2

p1

t1,[2,2]

t2,[1,4]

1.5

0

t2
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An Execution
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An Equivalent Semantic

The timed part is defined by a dynamic firing interval [e(t), l(t)]
associated with every enabled transition t.

Firing of t

A transition may fire if it is enabled and e(t) = 0.

Intervals of newly enabled transition are reinitialized: [e(t), l(t)] := [e(t), l(t)].

Time elapsing d

Time d may elapse if for every enabled transition t, d ≤ l(t).

Time intervals are accordingly updated [max(0, e(t)− d), l(t)− d].
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Revisiting the Execution

p2

p1

t1,[2,2]

t2,[1,4]

p2

p1

t1,[0.5,0.5]

t2,[1,4]

t2

p2

p1

t1,[0.5,0.5]

t2,[0,2.5]

1.5

p2

p1

t1,[0,0]

t2,[0.5,3.5]

0.5

p2

p1

t1

t2,[1,4]

t1



18/49

Outline

Time and Petri Nets

Time Petri Net: Syntax and Semantic

3 Analysis of Time Petri Nets

More on Difference Bound Matrices

Timed Petri Nets: Syntax and Semantics

Analysis of Timed Petri Nets



19/49

Properties

Generic properties

Reachability Given some state m can the system reach m?

Non Termination Does there exist an infinite firing sequence?

Deadlock Does there exist a state from which no transition will fire?

Specific properties

Temporal Logic CTL, LTL, CTL∗, etc.

Is e eventually followed by e′

in every maximal sequence?

Timed Temporal Logic TCTL, MTL, MITL, etc.

Is e eventually followed by e′ within at most 10 t.u.
in every maximal sequence?
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Overview

In TPNs,

all relevant properties are undecidable.

In bounded TPNs,

many generic properties are decidable,

some temporal model checking is decidable.

Boundedness problem

Undecidable for TPNs

A decidable sufficient condition: boundedness of the underlying PN

Key algorithms: class graph constructions
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What is a Class?

A class is a finite representation of an infinite set of reachable configurations.

A class is defined by:

A marking m;

Let Tm be the set of enabled transitions from m.

A set of variables {x0 = 0} ∪ {xt}t∈Tm
with xt the possible firing delay for t;

A matrix C (called a DBM) representing a set of constraints:

C(x1, . . . , xn) ≡
∧
i,j

xj − xi ≤ cij
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The Initial Class

Definition

Let T0 = {t1, . . . , tk} be the set of transitions enabled at m0.

Then:
C(xt1 , . . . , xtk) ≡

∧
t∈T0

e(t) ≤ xt ≤ l(t)

Example

t1,[0,4] t2,[5,6] t3,[3,6]

The initial class: C ≡ 0 ≤ x1 ≤ 4 ∧ 5 ≤ x2 ≤ 6 ∧ 3 ≤ x3 ≤ 6
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Firability of a Transition from a Class

Firability of t∗ from class (m,C)

In order to fire some t∗ ∈ Tm, the following system must have a solution:

Ct∗ ≡ C ∧
∧

t∈Tm\{t∗}

xt∗ ≤ xt

Example

t1,[0,4] t2,[5,6] t3,[3,6]

Ct1 ≡ 0 ≤ x1 ≤ 4 ∧ 5 ≤ x2 ≤ 6 ∧ 3 ≤ x3 ≤ 6 ∧ x1 ≤ x2 ∧ x1 ≤ x3
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Firing a Transition from a Class
Let m

t∗−→ m′ and Tm′ be the transitions enabled at m′ with delays x′t then:

If t is newly enabled, the constraint is C̃t ≡ (e(t) ≤ x′t ≤ l(t))
Otherwise the constraints are inherited by C̃t ≡ (x′t = xt − xt∗)

Consequently, the constraints for firing delays after firing of t∗ is

C ′ ≡ ∃xt1 . . . ∃xtk Ct∗ ∧
∧

t∈Tm′

C̃t with Tm = {t1, . . . , tk}
Example

t1,[0,4] t2,[5,6] t3,[3,6]

Ct1 ≡ ∃x1∃x2∃x3 0 ≤ x1 ≤ 4 ∧ 5 ≤ x2 ≤ 6 ∧ 3 ≤ x3 ≤ 6

∧ x1 ≤ x2 ∧ x1 ≤ x3
∧ x′2 = x2 − x1 ∧ x′3 = x3 − x1

Problem: this is no more a DBM-based representation of a class!
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Recovering the Class Representation

t1,[0,4] t2,[5,6] t3,[3,6]

Ct1 ≡ ∃x1∃x2∃x3 0 ≤ x1 ≤ 4 ∧ 5 ≤ x2 ≤ 6 ∧ 3 ≤ x3 ≤ 6

∧ x1 ≤ x2 ∧ x1 ≤ x3
∧ x′2 = x2 − x1 ∧ x′3 = x3 − x1

Recovery process

Elimination of x2 and x3 by substitution

Ct1 ≡ ∃x1 0 ≤ x1 ≤ 4 ∧ 5 ≤ x′2 + x1 ≤ 6 ∧ 3 ≤ x′3 + x1 ≤ 6

Elimination of x1 by upper and lower bounds

Ct1 ≡ ∃x1 max(0, 5− x′2, 3− x′3) ≤ x1 ≤ min(4, 6− x′2, 6− x′3)
≡ 1 ≤ x′2 ≤ 6 ∧ 3 ≤ x′3 ≤ 6 ∧ −3 ≤ x′3 − x′2 ≤ 1
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The Class Graph Algorithm

Add the initial class C to G (the class graph)
Insert(Heap,C)
While Heap is not empty do

C ← Pick(Heap)
For all t firable from C do

C ′ ← Fire(C, t)
If C ′ does not belong to the graph then

Add C ′ to G
Insert(Heap,C ′)

Add C
t−→ C ′ to G

Open issues (solved below)

How to check the emptiness of a DBM?

How to check whether two DBMs admit the same set of solutions?
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A Class Graph

t1,[0,4] t2,[5,6] t3,[3,6]

0≤x1≤4

5≤x2≤6

3≤x3≤6

1≤x2≤6

3≤x3≤6

−3≤x3−x2≤1

0≤x1≤1

1≤x2≤3

1≤x2−x1≤3

1≤x2≤30≤x3≤1 0≤x2≤3

•

t1 t3

t2 t3 t1

t3 t2 t2
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Properties of the Class Graph

Finiteness for bounded nets

The number of reachable markings is finite.

The absolute value of integers occurring in the DBMs are bounded by:
max(maxt∈T (l(t) | l(t) finite),maxt∈T (e(t) | l(t) infinite))

Trace and marking representation

The untiming of every firing sequence of the TPN is a path of the graph.

For every path of the graph there is a corresponding firing sequence.

Thus the reachable markings are exactly those occurring in the graph.

The reachable configurations are those of the classes occurring in the graph.



29/49

Outline

Time and Petri Nets

Time Petri Net: Syntax and Semantic

Analysis of Time Petri Nets

4 More on Difference Bound Matrices

Timed Petri Nets: Syntax and Semantics

Analysis of Timed Petri Nets



30/49

Properties of DBM

There exists a canonical representation for non empty DBM.

Canonization and emptyness checking can be done in polynomial time.

DBMs are effectively closed under:

1 Projection ∃x1 C(x1, x2, . . . , xn)
2 Relativization ∃x1 C(x1, x2 + x1, . . . , xn + x1)

3 Past ∃d C(x1 + d, x2 + d, . . . , xn + d)

4 Future ∃d C(x1 − d, x2 − d, . . . , xn − d)
5 Reset ∃x C(x, x2, . . . , xn) ∧ x1 = 0
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Canonization
Canonization is done by a shortest path computation.

Let the constraints be:

x1 − x0 ≤ 3 ∧ −2 ≤ x2 − x1 ≤ 1 ∧ x0 − x2 ≤ −2

10 2
3

-2

1

2

10 2
3

-2

1

1-1
4

Then the canonized constraint is:

1 ≤ x1 − x0 ≤ 3 ∧ −1 ≤ x2 − x1 ≤ 1 ∧ −4 ≤ x0 − x2 ≤ −2



32/49

The Canonization Algorithm

Floyd-Warshall Algorithm

For all k do

For all j do

For all i do

cij ← min(cij , cik + ckj)

For all i do

If cii < 0 Then Return(Empty DBM)
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Correctness of the Algorithm

Correctness of the shortest path algorithm . . .

The algorithm returns Empty DBM iff there is a negative cycle in the graph.

Otherwise cij is the length of a shortest path from xi to xj
and consequently cik ≤ cij + cjk for all k.

implies correctness of the canonization.

If there is a negative cycle in the graph there is no solution of the DBM.
(by transitivity one gets xi − xi < 0)

Otherwise for all i, j there is no solution with xj − xi > cij
and a solution with xj − xi = cij (define xi = 0 and xk = cik for all k 6= i)
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Timed Petri Net (TdPN): Syntax

p2

p1

t1,λ1

t2,λ2

[2,2]

[0,1]

[2,2]
[2,3]

0 0

0

Places: both logical and timed part of the configuration
Tokens: have an age

Transitions: events, actions, etc.
Labels: observable behaviour

Arcs: Pre (resp. Post) conditions of event occurrence
are multisets of timed intervals corresponding to
required (resp. possible) age of consumed (resp. produced) tokens
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TdPN: Marking Formalization

A marking is a finite multiset of tokens with locations and ages:

m =
∑

1≤i≤r

ai.(pi, τi) with r ≥ 0 and ai > 0

.

p2

p1

t1,λ1

t2,λ2

[2,2]

[0,1]

[2,2]
[2,3]

0 0

0

m0 = 2.(p1, 0) + (p2, 0)
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TdPN: Time Elapsing
Time elapsing d

Time may elapse without any restriction.

The age of tokens is accordingly updated m
d−→ m′

such that m′ =
∑

1≤i≤r ai.(pi, τi + d) when m =
∑

1≤i≤r ai.(pi, τi)

p2

p1

t1

t2

[2,2]

[0,1]

[2,2]
[2,3]

0 0

0 p2

p1

t1

t2

[2,2]

[0,1]

[2,2]
[2,3]

1.5 1.5

1.5

1.5
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TdPN: Transition Occurrence
Firing a transition

A transition t is firable if for every input place p of t there exists an
appropriate token, i.e. some (p, τi) such that τi ∈ Pre(p, t).

Tokens selected by the precondition are consumed.

Tokens specified by the postcondition are produced
with an initial age non deterministically chosen in the corresponding interval.

[2,3]

p2

p1

t1

t2

[2,2]

[0,1]

[2,2]
2 2

2

t1

[2,3]

p2

p1

t1

t2

[2,2]

[0,1]

[2,2]
2

0.5

Observation: the generalization to bags of intervals is intuitive
but requires technical machinery.
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TdPN: an Execution
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[2,3]
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[2,3]

p2

p1

t1

t2

[2,2]

[0,1]

[2,2]
2 2

2

t1

1.8

2

t2

[2,3]

p2

p1

t1
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3.8



40/49

Outline

Time and Petri Nets

Time Petri Net: Syntax and Semantic

Analysis of Time Petri Nets

More on Difference Bound Matrices

Timed Petri Nets: Syntax and Semantics

6 Analysis of Timed Petri Nets



41/49

Reachability Analysis of Bounded TdPNs

The number of (reachable) configurations is infinite (and even uncountable). So
one wants to partition configurations into regions such that:

1 The number of tokens of any place for two configurations in a region is the
same.

2 Two configurations in a region allow the same transition firings and the new
configurations belong to the same region.

3 If a configuration in a region letting time elapse reaches a new region every
other configuration may reach the same region by time elapsing.

4 There is a finite representation of a region such that the discrete and time
successors of the region are computable.

5 The number of regions is finite.
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A First Partition
(two tokens and two markings)

Intervals check integer values.

(x and y are the ages of the two tokens)

x

y

m
0

...

.

.

.

  .
 .
.

x

y

m
1

...

.

.

.

  .
 .
.

Why this partition is not appropriate?
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A Second Partition
(two tokens and two markings)

The exact value of a token age is irrelevant when it is beyond the maximal
constant of the TdPN (here 2)

x

y

m
0

x

y

m
1

Why this partition is not appropriate?
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A Third Partition
(two clocks and two locations)

x

y

m
0

x

y

m
1

Check that this partition is appropriate
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The Region Graph: Illustration
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About Reachability in the Region Graph

Warning: when a region is “reachable”, it does not mean that every configuration
of the region is reachable.

However it means that there is another reachable configuration of the region which
differs only on the values of irrelevant ages of tokens.

Hence, in order to check the reachability of a configuration, it is enough to
increase the maximal constant.

Example: reachability of ((p0, 1.7), (p1, 2.3)) requires to choose at least 3 as
maximal constant.
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Formalizing Regions
A region of a TdPN is:

n+ 1 different and ordered fractional parts of the token ages with the null
fractional part.

The distribution of tokens on places and their integer part (when less or equal
than the maximal constant) for every fractional part.

The distribution of tokens with age greater than the maximal constant on
places.

[0,1]

0.5

[2,3]

2.35
3.6

1.35
2

[0,1]

[2,3]

∞

1,1

2,0

4.8 ∞

a marking its region

0,2 2,1
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Time Elapsing for Regions
• When there is a token with integer age,

the next region is obtained by letting elapse some amount of time

such that there is no token with integer age.

• When there is no token with integer age and some tokens with finite age,

the next region is obtained by letting elapse the (minimal) amount time

to get a token with integer age.

• When there is no token with finite age, time elapses inside the region.

[0,1]

[2,3]

∞

1,2

2,1
∞

0,3 2,2

[0,1]

[2,3]

∞

1,1

2,0
∞

0,2 2,1

[0,1]

[2,3]

∞

1,2

2,1
∞

1,0 2,2

In the unbounded case, the corresponding region graph is infinite but it is a
well-structured transition system and thus (for instance) coverability can be
decided by a symbolic backward exploration.
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