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Time in Discrete Event Systems

Intuitively
A timed execution of a discrete event system (DES) is a finite or infinite sequence
of events: ej, ez, ... interleaved with (possibly null) delays.

(generated by some operational model)



Time in Discrete Event Systems

Intuitively

A timed execution of a discrete event system (DES) is a finite or infinite sequence
of events: ej, ez, ... interleaved with (possibly null) delays.
(generated by some operational model)

More formally
A timed execution of a DES is defined by two finite or infinite sequences:

» The sequence of states Sy, S1, 53, ... such that Sy is the initial state and .S; is
the state of the system after the occurrence of e;.

» The sequence of delays Ty, 11,75, ... such that Ty is the time elapsed before
the occurrence of ey and T; is the time elapsed between the occurrences of ¢;
and €i+1-



A Timed Execution
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Time in Petri Nets

What are the events?
Atomicity versus non atomicity

» Beginning and end of transition firings

» Transition firings

What are the delays?

Timing requirements for transition firing

» Duration of transition firing
(asap requirement)

> Delay before firing
(requirement between enabling and firing)

» Appropriate age of tokens
(requirement on tokens)



A Duration-Based Semantic
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Requires to specify durations
Problem: most of the time, states are not reachable markings of the net



A Delay-Based Semantic

time

Requires to specify transition delays



A Token-Based Semantic
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Requires to specify age requirements
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Time Petri Net (TPN): Syntax

P LAy, [2,3]

t1’7\’1/ [212] p2

Places: logical part of the state
Tokens: current value of the logical part of the state

Transitions: events, actions, etc.
Labels: observable behaviour

Arcs: Pre and Post (logical) conditions of event occurrence
Time intervals: temporal conditions of event occurrence



TPN: Transition Occurrence

Logical part

> The logical part of a state (or configuration) is a marking m, i.e. a number of
tokens per place m(p).

» A transition is enabled if the tokens required by the preconditions are present
in the marking.

Timed part

» There is an implicit clock per enabled transition ¢ and its value v(t) defines
the timed part of the state. The clock valuation v is the timed part of the
configuration.

> An enabled transition t is firable if its clock value lies in its interval [e(¢),(¢)].

Notation: (m,v) %



TPN: Change of Configuration

» Time may elapse with updates of clocks if every clock value does not go
beyond the corresponding interval.

» The marking is unchanged (m, v) 4, (m,v + d)

Transition firing ¢

» Tokens required by the precondition are consumed and tokens specified by the
postcondition are produced.

» Clocks values of newly enabled transitions are reset leading to valuation v’.

> Thus (m,v) 5 (m — Pre(t) + Post(t),v")

A transition ¢’ is newly enabled if

1. t/ is enabled in m — Pre(t) + Post(t)
2. and ' is disabled in m — Pre(t) or t' =t




TPN: an Execution

P LAy, [2,3]

tll7\’1’ [212] pZ
A maximal time elapsing (2p1 + pa, (0,0)) 2 (2p1 + p2, (2,2))
before a transition firing (2p1 + p2, (2,2)) 4, (p1 + p2,(0,0))

followed by a (maximal) time elapsing (p1 + p2, (0,0)) 2, (p1 + p2,(2,2))
before a transition firing (p1 + pa, (2,2)) = (pa, (—,0))

followed by a non maximal time elapsing (p2, (—,0)) 25, (p2,(—,2.5))
before a transition firing (pa, (—,2.5)) = (0, (=, —))



TPN: an Equivalent Semantic

The timed part is defined by a dynamic firing interval [(t),1(t)] associated with
every enabled transition t.

Firing of ¢

> A transition may fire if it is enabled and &(t) = 0.

> Intervals of newly enabled transition are reinitialized: [(t),1(t)] := [e(t),(t)].

Time elapsing d

» Time d may elapse if for every enabled transition ¢, d < I(t).

» Time intervals are accordingly updated [max(0,e(t) — d),l(t) — d].



TPN: Execution Revisited

P, T t,, A, [2,3]
Y

ti, A, [2,2] P,

A maximal time elapsing (2p1 + pa, (2,2, [2,3])) 2 (2p1 + p2, (0,0, [0, 1]))
before a transition firing (2p1 + p2, ([0, 0], [0,1])) b, (p1 + p2, ([2,2],2,3]))

followed by a time elapsing (pl + D2, ([2a 2]3 [2a 3])) i (pl + P2, ([07 0]7 [07 1]))
before a transition firing (p1 + p2. [0, 0], [0, 1]) = (p2, (—, [2,3]))

followed by a non maximal time elapsing (p2, (—, [2, 3])) 25, (p2, (—,[0,0.5]))
before a transition firing (p2, (—, [0,0.5])) L2, 0,(=,-))



Timed Petri Net (TdPN): Syntax

Places: both logical and timed part of the state
Tokens: have an age

Transitions: events, actions, etc.
Labels: observable behaviour

Arcs: Pre (resp. Post) conditions of event occurrence
are multisets of timed intervals corresponding to
required (resp. possible) age of consumed (resp. produced) tokens



TdPN: Transition Occurrence

Marking and (simplified) precondition

» The marking of place p, m(p) is a finite multiset of ages

m(p) = Z a;.7; with r > 0 and a; > 0

1<i<r

» The precondition of a transition ¢ with input place p, Pre(p,t) is an interval.

A transition ¢ is firable if for every input place p of ¢

There exists an appropriate token, i.e. some i such that 7; € Pre(p,t)

Observation: the generalization to bags of intervals is intuitive
but requires technical machinery.



TdPN: Change of Configuration

Time elapsing d

» Time may elapse without any restriction.

» The age of tokens is accordingly updated m 4o
such that m'(p) = >°, ;<. a;-(7i +d) when m(p) = 32, ;. a;.T;

Transition firing ¢

» Tokens selected by the precondition are consumed.

» Tokens specified by the postcondition are produced
with an initial age non deterministically chosen in the corresponding interval.



TdPN: an Execution

A time elapsing 2.(p1,0) + (p2,0) = 2.(p1,2) + (p2,2)

before a transition firing 2.(p1,2) + (p2,2) b, (p1,2) + (p2,0.5)
(observe that the age of token in py could be different)

followed by a time elapsing (p1,2) + (p2, 0. 5) (pl, 3.8) + (p2,2.3)
(observe that the token in py is dead)

before a transition firing (p1,3.8) + (p2, 2. 3) (p1,3.8)
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Limit of TPN: a Concurrent System

How to model this system?

» There are two concurrent events e and e’ which may (but have not to) occur.

» e may only occur at instants in [0, 1].

» ¢’ may occur at every instant.



Limit of TPN: a First Modelling

pe Pe‘

tlel[oll] tI,eI,[O,OO[

Wrong : ¢’ may only occur after time 1 if e occurs.



Limit of TPN: a Second Modelling

pe Pe‘

tl‘lel[lll] t/e/[oll] t‘/ell[olw[

Wrong (p< + Der 7(0 0, 0)) (pf =+ Per, (1 1 1)) (p( 7(_715_)>
and now at time 1 e can no Ionger occur.



Limit of TPN: Modelling with TdPN

[0,1] [0, o]
t,e ] t',e'



Limit of TdPN: an Urgent Requirement

How to model this system?

» There is a single event e

» which must occur in time interval [0, 1].



Limit of TdPN: Two Modellings

P, P,

[0,1]

t,e [ t,e, [0,1]

The TPN modelling is correct.

The TdPN modelling is wrong.
More generally there is no way to enforce the firing of a transition.
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Properties

Generic properties

» Reachability Given some state m can the system reach m?

» Coverability Given some state m can the system reach some state “greater or
equal than” m?

» Non Termination Does there exist an infinite firing sequence?
» Deadlock Does there exist a state from which no transition will fire?

Specific properties
» Temporal Logic CTL, LTL, CTL*, etc.
Exemple: Is e eventually followed by €’ in every maximal sequence?

» Bisimulation Given two systems, are their discrete behaviours distinguishable
by an active observer?

» Timed Temporal Logic TCTL, MTL, MITL, etc.
Exemple: Is e eventually followed by e’ within at most 10 t.u. in every
maximal sequence?

» Timed Bisimulation Given two systems, are their timed behaviours
distinguishable by an active observer?



Overview

TPN

» In TPNs, all relevant properties are undecidable.

> In bounded TPNs, many generic properties are decidable and temporal model
checking is decidable.
(by class graph constructions see later)

TdPN

» In TdPNs, some generic properties like coverability are decidable.
(see my second talk)

» In TdPNs, some other generic properties like reachability are undecidable.



Principle of Class Graph
Let To = {t1,...,tr} the set of transitions enabled at my
Let ; be the possible firing delay for t € Ty, the constraint for firing delays is:

Dy = /\ e(t) <z <I(t)
teTy

In order to fire some t*, the following system must have a solution.

DO,t* = DO A\ /\ T+ g Tt
teTo\{t*}

Let mg v, my and T} be the transitions enabled at m; with delays x} then:

> If ¢t is newly enabled, the constraint is C; = e(t) <z} <I(t)

» Otherwise the constraints are inherited by C; =z} = 2 — 24~

Consequently, the constraints for firing delays after firing of t* is

D1 = E'Jitl e El.Tfk D07t* A /\ Ct
teTy



Class Graph: an lllustration

Dp=0<z21 <4N5<2<6AN3<23<6
DO’tIEDo/\JnSZ‘Q/\xl <uz3
Dy = 3z13z9323 Doyy ATh =12 — 21 ATy = T3 — T

Elimination of x5 and xz3 by substitution
Di=32;0< 21 <4Ab<ah+x1 <6A3<azs+z1 <6
Elimination of x; by upper and lower bounds
D; = 3z; max(0,5 — 5,3 — %) < x1 < min(4,6 — x5,6 — x4)

D1=1<25<6A3<a;<6A-3<uazy—x,<1



A class is defined by:

Representation of a Class

> A marking m (with T}, the set of enabled transitions);

> A set of variables {zo} U {x;}ier,, with z¢ denoting the current time;

> A matrix C' (called a DBM) representing a set of constraints
C@h---ﬁn) = /\i,j Tj — Ty < Gy

Properties of DBM

» There exists a canonical representation for non empty DBM,;

» Canonization and emptyness checking can be done in polynomial time;

» DBM are effectively closed under:

1.

SN

Projection 3z1 C(x1,x2,...,%n)

Relativization 3z1 C(z1,22 + Z1,...,Tn + Z1)
Past 3d C(z1 + d,z2 + d, ..., xn + d)

Future 3d C(z1 — d,xz2 — d, ..., xn — d)

Reset 3d C(z,z2,...,2n) Ax1 =0



Canonization: Graph lllustration
Canonization is done by a shortest path computation
Let the constraint be:

T — 2o <3IN-2<2—x21<1ANxg—22 <2

e

Then the canonized constraint is

1<z —20<3N-1<29—21 <1IAN—-4<x9—29 <2



Canonization: the Algorithm

Canonization
For i, j, k such that i ¢ {j,k} do
1. temp < min(cjg, ¢ji + Cik)
2. If j #k Then cj;, < temp
Else If temp < 0 Then Return(Empty DBM)

Correctness of the shortest path algorithm . ..
» The algorithm returns Empty DBM iff there is a negative cycle in the graph.

» Otherwise ¢;; is the length of a shortest path from z; to z;
and consequently ¢;; < ¢;; + ¢, for all k.

implies correctness of the canonization.

> If there is a negative cycle in the graph there is no solution of the DBM.
(by transitivity one gets x; — z; < 0)

» Otherwise for all ¢, j there is no solution with x; — x; > ¢;;
and a solution with z; — z; = ¢;; (define z; = 0 and zi, = c;i, for all k # i)



Properties of the Class Graph

Finiteness for bounded nets

» The number of reachable markings is finite.

» The absolute value of integers occurring in the DBM are bounded by:
max(maxzer(L(¢) | {(¢) finite), maxicr(e(t) | () infinite))

Trace and marking representation

» The untiming of every firing sequence of the TPN is a path of the class graph.

» For every path of the class graph there is at least one corresponding firing
sequence.

» Thus the reachable markings are exactly those occurring on the class graph.
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