Time and Timed Petri Nets

Serge Haddad

LSV
ENS Cachan & CNRS & INRIA
haddad@lsv.ens-cachan.fr

DISC'11, June 9th 2011

- Time and Petri Nets
- 2 Timed Models
- Expressiveness
- 4 Analysis

Outline

1 Time and Petri Nets

Timed Models

Expressiveness

Analysis

Time in Discrete Event Systems

Intuitively

A timed execution of a discrete event system (DES) is a finite or infinite sequence of events: e_1,e_2,\ldots interleaved with (possibly null) delays.

(generated by some operational model)

More formally

A timed execution of a DES is defined by two finite or infinite sequences:

- ▶ The sequence of states S_0, S_1, S_2, \ldots such that S_0 is the initial state and S_i is the state of the system after the occurrence of e_i .
- ▶ The sequence of delays T_0, T_1, T_2, \ldots such that T_0 is the time elapsed before the occurrence of e_0 and T_i is the time elapsed between the occurrences of e_i and e_{i+1} .

Time in Discrete Event Systems

Intuitively

A timed execution of a discrete event system (DES) is a finite or infinite sequence of events: e_1, e_2, \ldots interleaved with (possibly null) delays. (generated by some operational model)

More formally

A timed execution of a DES is defined by two finite or infinite sequences:

- ▶ The sequence of states S_0, S_1, S_2, \ldots such that S_0 is the initial state and S_i is the state of the system after the occurrence of e_i .
- ▶ The sequence of delays T_0, T_1, T_2, \ldots such that T_0 is the time elapsed before the occurrence of e_0 and T_i is the time elapsed between the occurrences of e_i and e_{i+1} .

A Timed Execution

Time in Petri Nets

What are the events?

Atomicity versus non atomicity

- Beginning and end of transition firings
- Transition firings

What are the delays?

Timing requirements for transition firing

- Duration of transition firing (asap requirement)
- Delay before firing (requirement between enabling and firing)
- Appropriate age of tokens (requirement on tokens)

A Duration-Based Semantic

Requires to specify durations

Problem: most of the time, states are not reachable markings of the net

A Delay-Based Semantic

Requires to specify transition delays

A Token-Based Semantic

Requires to specify age requirements

Outline

Time and Petri Nets

2 Timed Models

Expressiveness

Analysis

Time Petri Net (TPN): Syntax

Places: logical part of the state

Tokens: current value of the logical part of the state

Transitions: events, actions, etc. Labels: observable behaviour

Arcs: Pre and Post (logical) conditions of event occurrence Time intervals: temporal conditions of event occurrence

TPN: Transition Occurrence

Logical part

- ▶ The logical part of a state (or *configuration*) is a *marking* m, i.e. a number of tokens per place m(p).
- ► A transition is *enabled* if the tokens required by the preconditions are present in the marking.

Timed part

- There is an implicit clock per enabled transition t and its value $\nu(t)$ defines the timed part of the state. The *clock valuation* ν is the timed part of the configuration.
- An enabled transition t is *firable* if its clock value lies in its interval [e(t), l(t)].

Notation: $(m, \nu) \xrightarrow{t}$

TPN: Change of Configuration

Time elapsing d

- Time may elapse with updates of clocks if every clock value does not go beyond the corresponding interval.
- ▶ The marking is unchanged $(m, \nu) \xrightarrow{d} (m, \nu + d)$

Transition firing t

- Tokens required by the precondition are consumed and tokens specified by the postcondition are produced.
- lacktriangle Clocks values of *newly enabled* transitions are reset leading to valuation u'.
- ▶ Thus $(m, \nu) \xrightarrow{t} (m Pre(t) + Post(t), \nu')$

A transition t' is newly enabled if

- 1. t' is enabled in m Pre(t) + Post(t)
- 2. and t' is disabled in m Pre(t) or t' = t

TPN: an Execution

A maximal time elapsing $(2p_1 + p_2, (0,0)) \xrightarrow{2} (2p_1 + p_2, (2,2))$ before a transition firing $(2p_1 + p_2, (2,2)) \xrightarrow{t_1} (p_1 + p_2, (0,0))$

followed by a (maximal) time elapsing $(p_1+p_2,(0,0)) \xrightarrow{2} (p_1+p_2,(2,2))$ before a transition firing $(p_1+p_2,(2,2)) \xrightarrow{t_1} (p_2,(-,0))$

followed by a non maximal time elapsing $(p_2,(-,0)) \xrightarrow{2.5} (p_2,(-,2.5))$ before a transition firing $(p_2,(-,2.5)) \xrightarrow{t_2} (0,(-,-))$

TPN: an Equivalent Semantic

The timed part is defined by a *dynamic* firing interval $[\overline{e}(t), \overline{l}(t)]$ associated with every enabled transition t.

Firing of t

- A transition may fire if it is enabled and $\overline{e}(t) = 0$.
- Intervals of newly enabled transition are reinitialized: $[\overline{e}(t),\overline{l}(t)]:=[e(t),l(t)].$

Time elapsing d

- ▶ Time d may elapse if for every enabled transition t, $d \leq \overline{l}(t)$.
- ▶ Time intervals are accordingly updated $[\max(0, \overline{e}(t) d), \overline{l}(t) d]$.

TPN: Execution Revisited

A maximal time elapsing $(2p_1+p_2,([2,2],[2,3])) \xrightarrow{2} (2p_1+p_2,([0,0],[0,1]))$ before a transition firing $(2p_1+p_2,([0,0],[0,1])) \xrightarrow{t_1} (p_1+p_2,([2,2],[2,3]))$

followed by a time elapsing $(p_1+p_2,([2,2],[2,3])) \xrightarrow{2} (p_1+p_2,([0,0],[0,1]))$ before a transition firing $(p_1+p_2,[0,0],[0,1]) \xrightarrow{t_1} (p_2,(-,[2,3]))$

followed by a non maximal time elapsing $(p_2,(-,[2,3])) \xrightarrow{2.5} (p_2,(-,[0,0.5]))$ before a transition firing $(p_2,(-,[0,0.5])) \xrightarrow{t_2} (0,(-,-))$

Timed Petri Net (TdPN): Syntax

Places: both logical and timed part of the state

Tokens: have an age

Transitions: events, actions, etc. Labels: observable behaviour

Arcs: Pre (resp. Post) conditions of event occurrence are multisets of timed intervals corresponding to required (resp. possible) age of consumed (resp. produced) tokens

TdPN: Transition Occurrence

Marking and (simplified) precondition

▶ The marking of place p, m(p) is a finite multiset of ages

$$m(p) = \sum_{1 \leq i \leq r} a_i.\tau_i \text{ with } r \geq 0 \text{ and } a_i > 0$$

▶ The precondition of a transition t with input place p, Pre(p,t) is an interval.

A transition t is firable if for every input place p of t

There exists an appropriate token, i.e. some i such that $\tau_i \in Pre(p,t)$

Observation: the generalization to bags of intervals is intuitive but requires technical machinery.

TdPN: Change of Configuration

Time elapsing d

- Time may elapse without any restriction.
- ► The age of tokens is accordingly updated $m \xrightarrow{d} m'$ such that $m'(p) = \sum_{1 \le i \le r} a_i.(\tau_i + d)$ when $m(p) = \sum_{1 \le i \le r} a_i.\tau_i$

Transition firing t

- ▶ Tokens selected by the precondition are consumed.
- ► Tokens specified by the postcondition are produced with an initial age non deterministically chosen in the corresponding interval.

TdPN: an **Execution**

A time elapsing $2.(p_1,0)+(p_2,0)\xrightarrow{2}2.(p_1,2)+(p_2,2)$ before a transition firing $2.(p_1,2)+(p_2,2)\xrightarrow{t_1}(p_1,2)+(p_2,0.5)$ (observe that the age of token in p_2 could be different)

followed by a time elapsing $(p_1,2)+(p_2,0.5)\xrightarrow{1.8}(p_1,3.8)+(p_2,2.3)$ (observe that the token in p_1 is dead)

before a transition firing $(p_1, 3.8) + (p_2, 2.3) \xrightarrow{t_2} (p_1, 3.8)$

Outline

Time and Petri Nets

Timed Models

3 Expressiveness

Analysis

Limit of TPN: a Concurrent System

How to model this system?

- lacktriangle There are two concurrent events e and e' which may (but have not to) occur.
- e may only occur at instants in [0,1].
- ightharpoonup e' may occur at every instant.

Limit of TPN: a First Modelling

Wrong : e' may only occur after time 1 if e occurs.

Limit of TPN: a Second Modelling

Wrong :
$$(p_e + p_{e'}, (0,0,0)) \xrightarrow{1} (p_e + p_{e'}, (1,1,1)) \xrightarrow{t''} (p_{e'}, (-,1,-))$$
 and now at time 1 e can no longer occur.

Limit of TPN: Modelling with TdPN

Limit of TdPN: an Urgent Requirement

How to model this system?

- ightharpoonup There is a single event e
- which must occur in time interval [0,1].

Limit of TdPN: Two Modellings

The TPN modelling is correct.

The TdPN modelling is wrong. More generally there is no way to enforce the firing of a transition.

Outline

Time and Petri Nets

Timed Models

Expressiveness

4 Analysis

Properties

Generic properties

- ▶ Reachability Given some state *m* can the system reach *m*?
- Coverability Given some state m can the system reach some state "greater or equal than" m?
- Non Termination Does there exist an infinite firing sequence?
- Deadlock Does there exist a state from which no transition will fire?

Specific properties

- ► Temporal Logic CTL, LTL, CTL*, etc. Exemple: Is e eventually followed by e' in every maximal sequence?
- ▶ Bisimulation Given two systems, are their discrete behaviours distinguishable by an active observer?
- ► Timed Temporal Logic TCTL, MTL, MITL, etc. Exemple: Is *e* eventually followed by *e'* within at most 10 t.u. in every maximal sequence?
- ► Timed Bisimulation Given two systems, are their timed behaviours distinguishable by an active observer?

Overview

TPN

- ▶ In TPNs, all relevant properties are undecidable.
- In bounded TPNs, many generic properties are decidable and temporal model checking is decidable.

(by class graph constructions see later)

TdPN

- In TdPNs, some generic properties like coverability are decidable. (see my second talk)
- ▶ In TdPNs, some other generic properties like reachability are undecidable.

Principle of Class Graph

Let $T_0=\{t_1,\ldots,t_k\}$ the set of transitions enabled at m_0 Let x_t be the possible firing delay for $t\in T_0$, the constraint for firing delays is:

$$D_0 \equiv \bigwedge_{t \in T_0} e(t) \le x_t \le l(t)$$

In order to fire some t^* , the following system must have a solution.

$$D_{0,t^*} \equiv D_0 \wedge \bigwedge_{t \in T_0 \setminus \{t^*\}} x_{t^*} \le x_t$$

Let $m_0 \xrightarrow{t^*} m_1$ and T_1 be the transitions enabled at m_1 with delays x'_t then:

- ▶ If t is newly enabled, the constraint is $C_t \equiv e(t) \le x_t' \le l(t)$
- ▶ Otherwise the constraints are inherited by $C_t \equiv x_t' = x_t x_{t^*}$

Consequently, the constraints for firing delays after firing of t^* is

$$D_1 \equiv \exists x_{t_1} \dots \exists x_{t_k} \ D_{0,t^*} \land \bigwedge_{t \in T_1} C_t$$

Class Graph: an Illustration

$$D_0 \equiv 0 \le x_1 \le 4 \land 5 \le x_2 \le 6 \land 3 \le x_3 \le 6$$

$$D_{0,t_1} \equiv D_0 \land x_1 \le x_2 \land x_1 \le x_3$$

$$D_1 \equiv \exists x_1 \exists x_2 \exists x_3 \ D_{0,t_1} \land x_2' = x_2 - x_1 \land x_3' = x_3 - x_1$$

Elimination of x_2 and x_3 by substitution

$$D_1 \equiv \exists x_1 \ 0 \le \ x_1 \le 4 \land 5 \le x_2' + x_1 \le 6 \land 3 \le x_3' + x_1 \le 6$$

Elimination of x_1 by upper and lower bounds

$$D_1 \equiv \exists x_1 \ \max(0, 5 - x_2', 3 - x_3') \le x_1 \le \min(4, 6 - x_2', 6 - x_3')$$

$$D_1 \equiv 1 \le x_2' \le 6 \land 3 \le x_3' \le 6 \land -3 \le x_3' - x_2' \le 1$$

Representation of a Class

A class is defined by:

- ▶ A marking m (with T_m the set of enabled transitions);
- ▶ A set of variables $\{x_0\} \cup \{x_t\}_{t \in T_m}$ with x_0 denoting the current time;
- A matrix C (called a DBM) representing a set of constraints $C(x_1,\ldots,x_n) \equiv \bigwedge_{i,j} x_j x_i \leq c_{ij}$

Properties of DBM

- There exists a canonical representation for non empty DBM;
- Canonization and emptyness checking can be done in polynomial time;
- DBM are effectively closed under:
 - 1. Projection $\exists x_1 \ C(x_1, x_2, \dots, x_n)$
 - 2. Relativization $\exists x_1 \ C(x_1, x_2 + x_1, \dots, x_n + x_1)$
 - 3. Past $\exists d \ C(x_1 + d, x_2 + d, \dots, x_n + d)$
 - 4. Future $\exists d \ C(x_1 d, x_2 d, \dots, x_n d)$
 - 5. Reset $\exists d \ C(x, x_2, ..., x_n) \land x_1 = 0$

Canonization: Graph Illustration

Canonization is done by a shortest path computation Let the constraint be:

$$x_1 - x_0 \le 3 \land -2 \le x_2 - x_1 \le 1 \land x_0 - x_2 \le -2$$

Then the canonized constraint is

$$1 < x_1 - x_0 < 3 \land -1 < x_2 - x_1 < 1 \land -4 < x_0 - x_2 < -2$$

Canonization: the Algorithm

Canonization

For i, j, k such that $i \notin \{j, k\}$ do

- 1. $temp \leftarrow \min(c_{jk}, c_{ji} + c_{ik})$
- 2. If $j \neq k$ Then $c_{jk} \leftarrow temp$ Else If temp < 0 Then Return(Empty DBM)

Correctness of the shortest path algorithm . . .

- ► The algorithm returns Empty DBM iff there is a negative cycle in the graph.
- ▶ Otherwise c_{ij} is the length of a shortest path from x_i to x_j and consequently $c_{ij} \le c_{ij} + c_{jk}$ for all k.

implies correctness of the canonization.

- If there is a negative cycle in the graph there is no solution of the DBM. (by transitivity one gets $x_i x_i < 0$)
- Otherwise for all i, j there is no solution with $x_j x_i > c_{ij}$ and a solution with $x_j x_i = c_{ij}$ (define $x_i = 0$ and $x_k = c_{ik}$ for all $k \neq i$)

Properties of the Class Graph

Finiteness for bounded nets

- ► The number of reachable markings is finite.
- The absolute value of integers occurring in the DBM are bounded by: $\max(\max_{t \in T}(l(t) \mid l(t) \text{ finite}), \max_{t \in T}(e(t) \mid l(t) \text{ infinite}))$

Trace and marking representation

- ▶ The untiming of every firing sequence of the TPN is a path of the class graph.
- ► For every path of the class graph there is at least one corresponding firing sequence.
- ▶ Thus the reachable markings are exactly those occurring on the class graph.

Main References

On definition and analysis of TPNs

- B. Berthomieu, M. Menasche, A State enumeration approach for analyzing time Petri nets, 3rd European Workshop on Petri Nets, Varenna, Italy, 1982.
- ▶ B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using time Petri nets. IEEE Transactions on Software Engineering, 17(3):259-273, 1991.

On definition and analysis of TdPNs

- V. Valero, D. Frutos-Escrig, F. R. F. Cuartero. On non-decidability of reachability for timed-arc Petri nets. In Proc. 8th Int. Work. Petri Nets and Performance Models (PNPM'99), pages 188-196. IEEE Computer Society Press, 1999
- ▶ P. A. Abdulla, A. Nylén. Timed Petri nets and bqos. In Proc. 22nd International Conference on Application and Theory of Petri Nets (ICATPN'01), volume 2075 of Lecture Notes in Computer Science, pages 53-70. Springer, 2001