
1/36

Time and Timed Petri Nets

Serge Haddad

LSV

ENS Cachan & CNRS & INRIA

haddad@lsv.ens-cachan.fr

DISC’11, June 9th 2011

1 Time and Petri Nets

2 Timed Models

3 Expressiveness

4 Analysis

2/36

Outline

1 Time and Petri Nets

Timed Models

Expressiveness

Analysis

3/36

Time in Discrete Event Systems

Intuitively

A timed execution of a discrete event system (DES) is a finite or infinite sequence
of events: e1, e2, . . . interleaved with (possibly null) delays.
(generated by some operational model)

More formally

A timed execution of a DES is defined by two finite or infinite sequences:

I The sequence of states S0, S1, S2, . . . such that S0 is the initial state and Si is
the state of the system after the occurrence of ei.

I The sequence of delays T0, T1, T2, . . . such that T0 is the time elapsed before
the occurrence of e0 and Ti is the time elapsed between the occurrences of ei

and ei+1.

3/36

Time in Discrete Event Systems

Intuitively

A timed execution of a discrete event system (DES) is a finite or infinite sequence
of events: e1, e2, . . . interleaved with (possibly null) delays.
(generated by some operational model)

More formally

A timed execution of a DES is defined by two finite or infinite sequences:

I The sequence of states S0, S1, S2, . . . such that S0 is the initial state and Si is
the state of the system after the occurrence of ei.

I The sequence of delays T0, T1, T2, . . . such that T0 is the time elapsed before
the occurrence of e0 and Ti is the time elapsed between the occurrences of ei

and ei+1.

4/36

A Timed Execution

5/36

Time in Petri Nets

What are the events?
Atomicity versus non atomicity

I Beginning and end of transition firings

I Transition firings

What are the delays?

Timing requirements for transition firing

I Duration of transition firing
(asap requirement)

I Delay before firing
(requirement between enabling and firing)

I Appropriate age of tokens
(requirement on tokens)

6/36

A Duration-Based Semantic

Requires to specify durations

Problem: most of the time, states are not reachable markings of the net

7/36

A Delay-Based Semantic

Requires to specify transition delays

8/36

A Token-Based Semantic

Requires to specify age requirements

9/36

Outline

Time and Petri Nets

2 Timed Models

Expressiveness

Analysis

10/36

Time Petri Net (TPN): Syntax

Places: logical part of the state
Tokens: current value of the logical part of the state

Transitions: events, actions, etc.
Labels: observable behaviour

Arcs: Pre and Post (logical) conditions of event occurrence
Time intervals: temporal conditions of event occurrence

11/36

TPN: Transition Occurrence

Logical part
I The logical part of a state (or configuration) is a marking m, i.e. a number of

tokens per place m(p).

I A transition is enabled if the tokens required by the preconditions are present
in the marking.

Timed part
I There is an implicit clock per enabled transition t and its value ν(t) defines

the timed part of the state. The clock valuation ν is the timed part of the
configuration.

I An enabled transition t is firable if its clock value lies in its interval [e(t), l(t)].

Notation: (m, ν)
t
−→

12/36

TPN: Change of Configuration

Time elapsing d

I Time may elapse with updates of clocks if every clock value does not go
beyond the corresponding interval.

I The marking is unchanged (m, ν)
d
−→ (m, ν + d)

Transition firing t

I Tokens required by the precondition are consumed and tokens specified by the
postcondition are produced.

I Clocks values of newly enabled transitions are reset leading to valuation ν ′.

I Thus (m, ν)
t
−→ (m− Pre(t) + Post(t), ν ′)

A transition t′ is newly enabled if

1. t′ is enabled in m− Pre(t) + Post(t)

2. and t′ is disabled in m− Pre(t) or t′ = t

13/36

TPN: an Execution

A maximal time elapsing (2p1 + p2, (0, 0))
2
−→ (2p1 + p2, (2, 2))

before a transition firing (2p1 + p2, (2, 2))
t1−→ (p1 + p2, (0, 0))

followed by a (maximal) time elapsing (p1 + p2, (0, 0))
2
−→ (p1 + p2, (2, 2))

before a transition firing (p1 + p2, (2, 2))
t1−→ (p2, (−, 0))

followed by a non maximal time elapsing (p2, (−, 0))
2.5
−−→ (p2, (−, 2.5))

before a transition firing (p2, (−, 2.5))
t2−→ (0, (−,−))

14/36

TPN: an Equivalent Semantic

The timed part is defined by a dynamic firing interval [e(t), l(t)] associated with
every enabled transition t.

Firing of t

I A transition may fire if it is enabled and e(t) = 0.

I Intervals of newly enabled transition are reinitialized: [e(t), l(t)] := [e(t), l(t)].

Time elapsing d

I Time d may elapse if for every enabled transition t, d ≤ l(t).

I Time intervals are accordingly updated [max(0, e(t)− d), l(t)− d].

15/36

TPN: Execution Revisited

A maximal time elapsing (2p1 + p2, ([2, 2], [2, 3]))
2
−→ (2p1 + p2, ([0, 0], [0, 1]))

before a transition firing (2p1 + p2, ([0, 0], [0, 1]))
t1−→ (p1 + p2, ([2, 2], [2, 3]))

followed by a time elapsing (p1 + p2, ([2, 2], [2, 3]))
2
−→ (p1 + p2, ([0, 0], [0, 1]))

before a transition firing (p1 + p2, [0, 0], [0, 1])
t1−→ (p2, (−, [2, 3]))

followed by a non maximal time elapsing (p2, (−, [2, 3]))
2.5
−−→ (p2, (−, [0, 0.5]))

before a transition firing (p2, (−, [0, 0.5]))
t2−→ (0, (−,−))

16/36

Timed Petri Net (TdPN): Syntax

Places: both logical and timed part of the state
Tokens: have an age

Transitions: events, actions, etc.
Labels: observable behaviour

Arcs: Pre (resp. Post) conditions of event occurrence
are multisets of timed intervals corresponding to
required (resp. possible) age of consumed (resp. produced) tokens

17/36

TdPN: Transition Occurrence

Marking and (simplified) precondition

I The marking of place p, m(p) is a finite multiset of ages

m(p) =
∑

1≤i≤r

ai.τi with r ≥ 0 and ai > 0

.

I The precondition of a transition t with input place p, Pre(p, t) is an interval.

A transition t is firable if for every input place p of t

There exists an appropriate token, i.e. some i such that τi ∈ Pre(p, t)

Observation: the generalization to bags of intervals is intuitive
but requires technical machinery.

18/36

TdPN: Change of Configuration

Time elapsing d

I Time may elapse without any restriction.

I The age of tokens is accordingly updated m
d
−→ m′

such that m′(p) =
∑

1≤i≤r ai.(τi + d) when m(p) =
∑

1≤i≤r ai.τi

Transition firing t

I Tokens selected by the precondition are consumed.

I Tokens specified by the postcondition are produced
with an initial age non deterministically chosen in the corresponding interval.

19/36

TdPN: an Execution

A time elapsing 2.(p1, 0) + (p2, 0)
2
−→ 2.(p1, 2) + (p2, 2)

before a transition firing 2.(p1, 2) + (p2, 2)
t1−→ (p1, 2) + (p2, 0.5)

(observe that the age of token in p2 could be different)

followed by a time elapsing (p1, 2) + (p2, 0.5)
1.8
−−→ (p1, 3.8) + (p2, 2.3)

(observe that the token in p1 is dead)

before a transition firing (p1, 3.8) + (p2, 2.3)
t2−→ (p1, 3.8)

20/36

Outline

Time and Petri Nets

Timed Models

3 Expressiveness

Analysis

21/36

Limit of TPN: a Concurrent System

How to model this system?

I There are two concurrent events e and e′ which may (but have not to) occur.

I e may only occur at instants in [0, 1].

I e′ may occur at every instant.

22/36

Limit of TPN: a First Modelling

Wrong : e′ may only occur after time 1 if e occurs.

23/36

Limit of TPN: a Second Modelling

Wrong : (pe + pe′ , (0, 0, 0))
1
−→ (pe + pe′ , (1, 1, 1))

t′′

−→ (pe′ , (−, 1,−))
and now at time 1 e can no longer occur.

24/36

Limit of TPN: Modelling with TdPN

25/36

Limit of TdPN: an Urgent Requirement

How to model this system?

I There is a single event e

I which must occur in time interval [0, 1].

26/36

Limit of TdPN: Two Modellings

The TPN modelling is correct.

The TdPN modelling is wrong.
More generally there is no way to enforce the firing of a transition.

27/36

Outline

Time and Petri Nets

Timed Models

Expressiveness

4 Analysis

28/36

Properties

Generic properties
I Reachability Given some state m can the system reach m?

I Coverability Given some state m can the system reach some state “greater or
equal than” m?

I Non Termination Does there exist an infinite firing sequence?

I Deadlock Does there exist a state from which no transition will fire?

Specific properties
I Temporal Logic CTL, LTL, CTL∗, etc.

Exemple: Is e eventually followed by e′ in every maximal sequence?

I Bisimulation Given two systems, are their discrete behaviours distinguishable
by an active observer?

I Timed Temporal Logic TCTL, MTL, MITL, etc.
Exemple: Is e eventually followed by e′ within at most 10 t.u. in every
maximal sequence?

I Timed Bisimulation Given two systems, are their timed behaviours
distinguishable by an active observer?

29/36

Overview

TPN

I In TPNs, all relevant properties are undecidable.

I In bounded TPNs, many generic properties are decidable and temporal model
checking is decidable.
(by class graph constructions see later)

TdPN

I In TdPNs, some generic properties like coverability are decidable.
(see my second talk)

I In TdPNs, some other generic properties like reachability are undecidable.

30/36

Principle of Class Graph
Let T0 = {t1, . . . , tk} the set of transitions enabled at m0

Let xt be the possible firing delay for t ∈ T0, the constraint for firing delays is:

D0 ≡
∧

t∈T0

e(t) ≤ xt ≤ l(t)

In order to fire some t∗, the following system must have a solution.

D0,t∗ ≡ D0 ∧
∧

t∈T0\{t∗}

xt∗ ≤ xt

Let m0

t∗

−→ m1 and T1 be the transitions enabled at m1 with delays x′
t then:

I If t is newly enabled, the constraint is Ct ≡ e(t) ≤ x′
t ≤ l(t)

I Otherwise the constraints are inherited by Ct ≡ x′
t = xt − xt∗

Consequently, the constraints for firing delays after firing of t∗ is

D1 ≡ ∃xt1 . . . ∃xtk
D0,t∗ ∧

∧

t∈T1

Ct

31/36

Class Graph: an Illustration

D0 ≡ 0 ≤ x1 ≤ 4 ∧ 5 ≤ x2 ≤ 6 ∧ 3 ≤ x3 ≤ 6

D0,t1 ≡ D0 ∧ x1 ≤ x2 ∧ x1 ≤ x3

D1 ≡ ∃x1∃x2∃x3 D0,t1 ∧ x′
2 = x2 − x1 ∧ x′

3 = x3 − x1

Elimination of x2 and x3 by substitution

D1 ≡ ∃x1 0 ≤ x1 ≤ 4 ∧ 5 ≤ x′
2 + x1 ≤ 6 ∧ 3 ≤ x′

3 + x1 ≤ 6

Elimination of x1 by upper and lower bounds

D1 ≡ ∃x1 max(0, 5− x′
2, 3− x′

3) ≤ x1 ≤ min(4, 6− x′
2, 6− x′

3)

D1 ≡ 1 ≤ x′
2 ≤ 6 ∧ 3 ≤ x′

3 ≤ 6 ∧ −3 ≤ x′
3 − x′

2 ≤ 1

32/36

Representation of a Class

A class is defined by:

I A marking m (with Tm the set of enabled transitions);

I A set of variables {x0} ∪ {xt}t∈Tm
with x0 denoting the current time;

I A matrix C (called a DBM) representing a set of constraints
C(x1, . . . , xn) ≡

∧
i,j xj − xi ≤ cij

Properties of DBM

I There exists a canonical representation for non empty DBM;

I Canonization and emptyness checking can be done in polynomial time;

I DBM are effectively closed under:

1. Projection ∃x1 C(x1, x2, . . . , xn)
2. Relativization ∃x1 C(x1, x2 + x1, . . . , xn + x1)
3. Past ∃d C(x1 + d, x2 + d, . . . , xn + d)
4. Future ∃d C(x1 − d, x2 − d, . . . , xn − d)
5. Reset ∃d C(x, x2, . . . , xn) ∧ x1 = 0

33/36

Canonization: Graph Illustration
Canonization is done by a shortest path computation
Let the constraint be:

x1 − x0 ≤ 3 ∧ −2 ≤ x2 − x1 ≤ 1 ∧ x0 − x2 ≤ −2

Then the canonized constraint is

1 ≤ x1 − x0 ≤ 3 ∧ −1 ≤ x2 − x1 ≤ 1 ∧ −4 ≤ x0 − x2 ≤ −2

34/36

Canonization: the Algorithm

Canonization

For i, j, k such that i /∈ {j, k} do

1. temp← min(cjk , cji + cik)

2. If j 6= k Then cjk ← temp
Else If temp < 0 Then Return(Empty DBM)

Correctness of the shortest path algorithm . . .

I The algorithm returns Empty DBM iff there is a negative cycle in the graph.

I Otherwise cij is the length of a shortest path from xi to xj

and consequently cij ≤ cij + cjk for all k.

implies correctness of the canonization.
I If there is a negative cycle in the graph there is no solution of the DBM.

(by transitivity one gets xi − xi < 0)

I Otherwise for all i, j there is no solution with xj − xi > cij

and a solution with xj − xi = cij (define xi = 0 and xk = cik for all k 6= i)

35/36

Properties of the Class Graph

Finiteness for bounded nets

I The number of reachable markings is finite.

I The absolute value of integers occurring in the DBM are bounded by:
max(maxt∈T (l(t) | l(t) finite), maxt∈T (e(t) | l(t) infinite))

Trace and marking representation

I The untiming of every firing sequence of the TPN is a path of the class graph.

I For every path of the class graph there is at least one corresponding firing
sequence.

I Thus the reachable markings are exactly those occurring on the class graph.

36/36

Main References

On definition and analysis of TPNs

I B. Berthomieu, M. Menasche, A State enumeration approach for analyzing time
Petri nets, 3rd European Workshop on Petri Nets, Varenna, Italy, 1982.

I B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions on Software Engineering, 17(3):259-273, 1991.

On definition and analysis of TdPNs

I V. Valero, D. Frutos-Escrig, F. R. F. Cuartero. On non-decidability of reachability
for timed-arc Petri nets. In Proc. 8th Int. Work. Petri Nets and Performance
Models (PNPM’99), pages 188-196. IEEE Computer Society Press, 1999

I P. A. Abdulla, A. Nylén. Timed Petri nets and bqos. In Proc. 22nd International
Conference on Application and Theory of Petri Nets (ICATPN’01), volume 2075 of
Lecture Notes in Computer Science, pages 53-70. Springer, 2001

	Time and Petri Nets
	Timed Models
	Expressiveness
	Analysis

