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Timed Automata: Syntax

A timed automaton (TA) is:
I A finite automaton

I enlarged with a set of clocks (X) which evolve synchronously and continuously.

States (locations) of an automaton include invariants which restrict the way time
may elapse in a location and whose syntax is:

∧

x∈X

x ∼ c

where ∼∈ {<,≤} and c is some (possibly infinite) constant

Transitions of an automaton include clock resets and guards which restrict the
temporal occurrence of a transition and whose syntax is:

∧

x∈X

x ∼ c

where ∼∈ {>, <,≥,≤} and c is some (possibly infinite) constant
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Timed Automata: an Example
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Timed Automata: Semantic

A configuration of timed automaton is given by:

I a location (l),

I a value v(x) per clock satisfying the location invariant (v |= Inv(l)).

A configuration may evolve by a delay d such that the invariant is still satisfied:

v + d |= Inv(l) with (v + d)(x) = v(x) + d

A configuration may change by a transition (l, g, a, R, l′) to configuration (l′, v′)
iff:

I v |= g

I If x ∈ R then v′(x) = 0 else v′(x) = v(x)

I v′ |= Inv(l′)
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Example Continued

What happens next?
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Invariants in Timed Automata

Invariants may be deleted in timed automata:

I by adding the conjunct Inv(l) to every guard of an edge e outgoing from l

I by adding the conjunct
∧

x∈X\R(e) x ∼ c to every guard of an edge e

incoming to l with Inv(l) =
∧

x∈X x ∼ c

Nevertheless, this transformation

I is valid w.r.t. location reachability and linear temporal logics

I is invalid w.r.t. bisimulation and branching temporal logics
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Extensions of TA

More elaborate guards and updates
I Comparing clocks: x − x′ ∼ c

I Updates rather than resets: x := c or let x in [a, b]

I Adding finite counters in guards and updates

Composition of TA

A network of timed automata (NTA) is:

I a set of timed automata;

I a (partial) synchronization function from vectors of local actions to global
actions.

A network of timed automata may always be transformed into a timed automaton
equivalent w.r.t. bisimulation and reachability.

But this translation yields an exponential blow up.
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NTA: The Train Crossing Example

The trains i = 1, 2, . . .
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NTA: The Train Crossing Example

The gate
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NTA: The Train Crossing Example

The controller
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NTA: The Train Crossing Example

The synchronization function
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Reachability Analysis: the Key Idea

The number of (reachable) configurations is infinite (and even uncountable). So
one wants to partition configurations into regions such that:

1. Two configurations in a region allow the same transitions and the new
configurations belong to the same region.

2. If a configuration in a region letting time elapse reaches a new region every
other configuration may reach the same region by time elapsing.

3. There is a finite representation of a region such that the discrete and time
successors of the region are computable.

4. The number of regions is finite.
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A First Partition

(two clocks and two locations)

Guards and invariants check integer values

Why this partition is not appropriate?
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A Second Partition

(two clocks and two locations)
The exact value of a clock is irrelevant when it is beyond the maximal constant of

the TA (here 2)

Why this partition is not appropriate?
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A Third Partition

(two clocks and two locations)

Check that this partition is appropriate
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The Region Graph: Illustration
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About Reachability in the Region Graph
Warning: when a region is “reachable”, it does not mean that every configuration
of the region is reachable.

However it means that there is another reachable configuration of the region which
differs only on the values of irrelevant clocks.

Hence, in order to check the reachability of a configuration, it is enough to
increase the maximal constant.

Example: reachability of (l0, 1.7, 2.3) requires to choose at least 3 as maximal
constant.
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Regions for TdPNs
In TdPNs, the tokens are clocks. So a region of a TdPN is:

I n + 1 different and ordered fractional parts of the token ages with the null
fractional part.

I The distribution of tokens on places and their integer part (when less or equal
than the maximal constant) for every fractional part.

I The distribution of tokens with age greater than the maximal constant on
places.

The corresponding region graph is infinite ... but it is a well-structured transition
system (out of the scope of the talk) and thus (for instance) coverability can be
decided by a symbolic backward exploration.
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Regions and Zones

In practice, the building of the region graph is relatively inefficient since the
partition is too finer w.r.t. a particular TA.

An alternative way is to work with zones.

A zone is defined by an extended DBM

I whose variables are clocks

I enlarged with a special clock x0 representing the value 0.

I where the constraints are either xj − xi ≤ cij or xj − xi < cij .
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The Zone Graph: Illustration

Z0 = (l0, {x = y = 0})

Z1 = (l0, Future(Z0) ∩ {x ≤ 1}) = (l0, {0 ≤ x = y ≤ 1})

Z2 = (l1, Future(Z1 ∩ {x ≤ 1}) ∩ {x ≤ 1}) = (l1, {0 ≤ x = y ≤ 1})

Z3 = (l1, Future(Reset(Z1 ∩ {x = 1}, {y})) ∩ {x ≤ 1}) = (l1, {x = 1 ∧ y = 0})

Z4 = (l2, Future(Z1 ∩ {x ≥ 1 ∧ y ≤ 0})) = (l2, {0 ≤ y = x − 1})
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An Infinite Zone Graph
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The Zone Graph: Extrapolation
During the building of a zone examine every constraint x − y ∼ c with ∼∈ {<,≤}
(K is the maximal constant)

I and substitute to it the constraint x − y ∼ −K when c < −K

I Delete the constraint when c > K

Extrapolation enlarges the zone with equivalent configurations and ensures
termination.

Z1 = (l0, {0 ≤ y = x ≤ 1}) no extrapolation

Z2 = (l0, {0 ≤ y = x − 1 ≤ 1}) no extrapolation

Before extrapolation Z3 = (l0, {0 ≤ y = x − 2 ≤ 1})
After extrapolation Z3 = (l0, {0 ≤ y ≤ 1 ∧ y ≤ x − 1})

Before extrapolation Z4 = (l0, {0 ≤ y ≤ 1 ∧ y ≤ x − 2})
After extrapolation Z4 = Z3
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The Zone Graph: Backward Exploration

The “backward” zone graph always terminates since the coefficients of the zones
remain bounded.

Example: Is (l2, {x = 2 ∧ y = 3}) reachable in the following TA?
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Expressiveness: A Language Point of View

Observation: There are non regular untimed languages of (unbounded) nets while
all TA untimed languages are regular.

From TA to nets

I Timed Automata can be “simulated” by bounded TPNs.

I Timed Automata can be “simulated” by bounded TdPNs with acceptance
conditions.

But these simulations are not valid w.r.t. bisimulation.

From bounded nets to TA

I Bounded TPNs can be simulated by Timed Automata.

I Bounded TdPNs can be simulated by Timed Automata.

And these simulations are valid w.r.t. bisimulation.
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From TA to TPN

The structural part

I There is a place per location.

I There is an untimed net transition per automata transition (i.e. with interval
[0,∞[) which takes as input the source location.

Time guards

I There is a place Tx∼c per conjunct of a guard x ∼ c which is an input for the
transitions where it occurs.

I The marking of such a place is ruled by an “independent” timed subnet.

Clock Resets

I Clock resets consists (in zero time) to reinitialize all the timed subnets related
to the clocks to be reset whatever the state of these subnets.

I The clock resets take place after the automata transition and before
producing the token in the destination location.



29/37

From TA to TPN: an Example
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From TA to TdPN
The structural part

I There is a place per location.

I There is a net transition per automata transition which takes as untimed
input (i.e. with interval [0,∞[) the source location.

Time guards

I There is a place Tx∼c per conjunct of a guard x ∼ c which is an untimed
input for the transitions where it occurs.

I The control that a token of such a place has been checked at appropriate time
is performed by an “independent” timed subnet with an acceptance condition.

Clock Resets

I Clock resets consists (in zero time) to reinitialize all the timed subnets related
to the clocks to be reset whatever the state of these subnets.

I The clock resets take place after the automata transition and before
producing the token in the destination location.
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From TA to TdPN: an Example
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Limit of the simulations

A TA not bisimilar to any TPN

A TA whose infinite language is not the one of any TdPN
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From Bounded TPN to TA

There is one clock xt per transition t.

Build the reachability graph.

I The locations of the TA are the reachable markings.

I The transitions of the TA are the transitions of the reachability graph.

Define the invariants. Given Tm the set of transitions enabled at m

The invariant of m is:
∧

t∈Tm
xt ≤ l(t).

Define the guards and updates. Given a transition m
t
−→ m′,

I The guard is x(t) ≥ e(t)

I The clocks to be reset are those associated with the newly enabled transitions.

Warning: There exists an alternative structural translation but it uses both
networks of TA and finite counters.
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From Bounded TPN to TA: an Example
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From Bounded TdPN to TA

Transform the net such that all intervals of output arcs are [0, 0].

Build the reachability graph with token identities pi and instances of transitions

I The locations of the TA are the reachable markings.

I The transitions of the TA are the transitions of the reachability graph.

There is one clock xpi
per token pi in place p.

Define the guards and updates. Given a transition m
t
−→ m′,

I For every input arc (p, t) labelled by interval [a, b] and consumed token pi

the guard is a ≤ xpi
≤ b

I The clocks to be reset are those associated with the tokens that are produced.
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From Bounded TdPN to TA: an Example
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