Homework 2 - Probabilistic aspects of computer science

1 The maximal expected reward

Let X_i denote the random state at time i and Y_i denote the random action at time i of an MDP. Given a policy π , the maximal expected reward at time horizon t of π is defined by:

$$M_t^{\boldsymbol{\pi}} \stackrel{\text{def}}{=} \mathbf{E}^{\boldsymbol{\pi}} \left(\max(r(X_i, Y_i) \mid 0 \le i < t) \right)$$

The corresponding vectorial reward (which depends on the initial state) is denoted \mathbf{M}_t^{π} . As usual, the optimal vectorial reward \mathbf{M}_t^* is defined by: for all $s \in S$, $\mathbf{M}_t^*[s] \stackrel{\text{def}}{=} \sup_{\pi} (\mathbf{M}_t^{\pi}[s])$.

Question 1. Show an example of MDP such that no Markovian policy is optimal for the (vectorial) maximal expected reward at time horizon 3.

Question 2. Let \mathcal{M} be an MDP and t be an horizon. Propose an algorithm that finds the optimal reward and an optimal policy for the maximal expected reward problem in polynomial time w.r.t. the size of \mathcal{M} and in pseudo-polynomial time w.r.t. t.

Hint: The algorithm builds an MDP \mathcal{M}' such that from the optimal reward and an optimal policy for the pure total expected reward in \mathcal{M}' , one can recover the optimal reward and an optimal policy for the maximal expected reward in \mathcal{M} .

2 Terminal components of a MDP

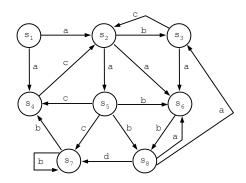
Let \mathcal{M} be an MDP, we introduce the notion of a subMDP. A subMDP \mathcal{M}' of \mathcal{M} is a non empty set of pairs state-action such that $(s, a) \in \mathcal{M}'$ implies that $s \in S$ and $a \in A_s$. The underlying graph of \mathcal{M}' , $G_{\mathcal{M}'} = (S', E')$ is defined by:

- 1. $S' \stackrel{\text{def}}{=} \{ s \in S \mid \exists (s, a) \in \mathcal{M}' \};$
- 2. $E' \stackrel{\text{def}}{=} \{(s, s') \in (S')^2 \mid \exists (s, a) \in \mathcal{M}' \text{ with } p(s'|s, a) > 0 \}.$

A subMDP \mathcal{M}' is a terminal component of \mathcal{M} if:

- 1. For all $s, s' \in S$, $a \in A_s$, $(s, a) \in \mathcal{M}'$ and p(s'|s, a) > 0 implies $s' \in S'$;
- 2. $G_{\mathcal{M}'}$ is strongly connected.

 \mathcal{M}' , a terminal component of \mathcal{M} , is maximal if there is no terminal component \mathcal{M}'' with $S' \subseteq S''$, $E' \subseteq E''$ and $S' \cup E' \subsetneq S'' \cup E''$.



We have drawn above $G_{\mathcal{M}}$ the underlying graph of a MDP \mathcal{M} where an action a labels an edge (s, s') if p(s'|s, a) > 0.

Question 3. Let \mathcal{M} be the MDP whose graph is drawn above. Find a maximal terminal component of \mathcal{M} and a non maximal terminal component of \mathcal{M} .

Let $\rho = s_0, a_0, s_1, a_1, \ldots$ be an infinite path. Define $\omega(\rho) \stackrel{\text{def}}{=} \{(s, a) \mid \forall i \in \mathbb{N} \ \exists j \geq i \ (s_j, a_j) = (s, a)\},$ the set of pairs state-action infinitely occurring in ρ .

Question 4. Let π be a policy and $\rho = X_0, Y_0, X_1, Y_1, \ldots$ the random path of an MDP. Prove that:

 $\mathbf{Pr}^{\pi}(\omega(\rho))$ is a terminal component = 1

```
Algorithm 1: Computing the maximal terminal components
```

```
MaxTerminalComponents(\mathcal{M})
Input: \mathcal{M}, an MDP
Output: \mathcal{SM}, the set of maximal terminal components of \mathcal{M}
Data: i integer, s, s' states, a action, sub, sub' subMDP, stack, a stack of subMDP
sub \leftarrow \{(s, a) \mid s \in S, a \in A_s\}; Push(stack, sub); \mathcal{SM} \leftarrow \emptyset
while not Empty(stack) do
    sub \leftarrow Pop(stack); S' \leftarrow \{s \mid \exists (s, a) \in sub\}
    for (s, a) \in sub \ do
         for s' \in S do
          if p(s'|s,a) > 0 and s' \notin S' then sub \leftarrow sub \setminus \{(s,a)\}
         end
    \quad \mathbf{end} \quad
    if sub \neq \emptyset then
         Compute the strongly connected components of G_{sub}, S_1, \ldots, S_K
             for i from 1 to K do sub' \leftarrow \{(s, a) \in sub \mid s \in S_i\}; Push(stack, sub')
         else \mathcal{SM} \leftarrow \mathcal{SM} \cup \mathit{sub}
    end
end
return \mathcal{SM}
```

Question 5. Prove that algorithm 1 returns the set of maximal terminal components.

Question 6. Analyse the (worst-case) complexity of algorithm 1 w.r.t. |S| and |A|.

3 Minimising the reachability cost

Let \mathcal{M} be an MDP with non negative rewards and an absorbing state s_e : A_{s_e} is a singleton whose Dirac distribution leads to s_e and whose reward is null. We assume that there exist policies that ensure to reach s_e with probability 1 and such policies are called winning policies. In this case, there exists a stationary deterministic winning policy.

The reachability cost of a policy π (which may be infinite) is defined by:

$$R^{\pi} \stackrel{\text{def}}{=} \sum_{i \in \mathbb{N}} \mathbf{E}^{\pi}(r(X_i, Y_i))$$

The corresponding vectorial cost (which depends on the initial state) is denoted \mathbf{R}^{π} . The optimal vectorial cost \mathbf{R}^* is defined by: for all $s \in S$, $\mathbf{R}^*[s] \stackrel{\text{def}}{=} \inf_{\pi} (\mathbf{R}^{\pi}[s] \mid \pi \text{ is winning})$. The reachability cost problem consists to find the minimal reachability cost \mathbf{R}^* and an optimal winning policy.

Question 7. Using the MDP figured below (with only Dirac distributions) show that a non winning strategy can have a smaller reachability cost than any winning strategy.

$$(s_1)$$
 $a,0$ (s_2) $a,0$ (s_3) $b,1$ (s_e) $a,0$

In the sequel, we assume that for all non winning policy π there exists $s \in S$ such that: $\mathbf{R}^{\pi}[s] = \infty$. Let the operator L on $Rew \stackrel{\text{def}}{=} \{ \mathbf{v} \in \mathbb{R}^S \mid \mathbf{v}[s_e] = 0 \land \forall s \in S \ \mathbf{v}[s] \geq 0 \}$ be defined by:

$$\forall s \in S \ L(\mathbf{v})[s] = \min_{a \in A_s} \left(r(s, a) + \sum_{s' \in S} p(s'|s, a) \mathbf{v}[s'] \right)$$

Question 8. Let $\mathbf{v} \in Rew$ be a fixpoint of L. Prove that $\mathbf{v} \leq \mathbf{R}^*$.

Question 9. Let d^{∞} be a stationary policy. Show that $\mathbf{R}^{d^{\infty}} = \sum_{i \in \mathbb{N}} (\mathbf{P}_d)^i \mathbf{r}_d$ (using the notations of the lecture notes).

Let d^{∞} be a winning policy. Since d^{∞} is stationary, one can build an ordering of $S = \{s_1, \ldots, s_n\}$ such that $s_1 = s_e$ and for all s_i with i > 1 there exists $\alpha_i < i$ such that $\mathbf{P}_d[i, \alpha_i] > 0$. Let $p = \min(\min(\mathbf{P}_d[i, \alpha_i] \mid i > 1), \frac{1}{2})$. Define $\mathbf{v} \in Rew$ by $\mathbf{v}[s_i] = 1 - p^{2i}$ for i > 1.

Question 10. Show that $\mathbf{P}^{d^{\infty}}\mathbf{v} \leq \gamma\mathbf{v}$ with $\gamma \stackrel{\text{def}}{=} \frac{1-p^{2n-1}}{1-p^{2n}}$. Deduce that $\mathbf{R}^{d^{\infty}}$ is finite. Given d a decision rule, the operator L_d on Rew is defined by:

$$L_d(\mathbf{v}) = \mathbf{r}_d + \mathbf{P}_d\mathbf{v}$$

Question 11. Let d^{∞} be a winning policy. Show that $\mathbf{R}^{d^{\infty}}$ is a fixpoint of L_d .

Question 12. Let d be a decision rule such that there exists $\mathbf{v} \in Rew$ with $L_d(\mathbf{v}) \leq \mathbf{v}$. Show that d^{∞} is a winning policy. Hint: use the assumption about non winning policies.

Question 13. Let d^{∞} be a deterministic stationary winning policy such that $L(\mathbf{R}^{d^{\infty}}) \leq \mathbf{R}^{d^{\infty}}$. Let d' be a deterministic decision rule such that $L(\mathbf{R}^{d^{\infty}}) = L_{d'}(\mathbf{R}^{d^{\infty}})$. Show that $\mathbf{R}^{d^{\infty}} \leq \mathbf{R}^{d^{\infty}}$.

Question 14. Deduce from the previous questions that there exists a winning deterministic stationary policy d^{∞} such that $L(\mathbf{R}^{d^{\infty}}) = \mathbf{R}^{d^{\infty}}$ and that d^{∞} is an optimal policy for the reachability cost problem.

Question 15. Design a linear programming problem such that its solution is \mathbb{R}^* .