
Homework 2 - Probabilistic aspects of computer science

1 The maximal expected reward
Let Xi denote the random state at time i and Yi denote the random action at time i of an MDP.
Given a policy πππ, the maximal expected reward at time horizon t of πππ is defined by:

Mπππ
t

def
= Eπππ (max(r(Xi, Yi) | 0 ≤ i < t))

The corresponding vectorial reward (which depends on the initial state) is denoted Mπππ
t . As usual,

the optimal vectorial reward M∗t is defined by: for all s ∈ S, M∗t [s]
def
= supπππ(M

πππ
t [s]).

Question 1. Show an example of MDP such that no Markovian policy is optimal for the (vectorial)
maximal expected reward at time horizon 3.
Question 2. LetM be an MDP and t be an horizon. Propose an algorithm that finds the optimal
reward and an optimal policy for the maximal expected reward problem in polynomial time w.r.t.
the size ofM and in pseudo-polynomial time w.r.t. t.
Hint: The algorithm builds an MDP M′ such that from the optimal reward and an optimal policy
for the pure total expected reward inM′, one can recover the optimal reward and an optimal policy
for the maximal expected reward in M.

2 Terminal components of a MDP

LetM be an MDP, we introduce the notion of a subMDP. A subMDP M′ ofM is a non empty
set of pairs state-action such that (s, a) ∈ M′ implies that s ∈ S and a ∈ As. The underlying
graph ofM′, GM′ = (S′, E′) is defined by:

1. S′ def
= {s ∈ S | ∃(s, a) ∈M′};

2. E′ def
= {(s, s′) ∈ (S′)2 | ∃(s, a) ∈M′ with p(s′|s, a) > 0}.

A subMDPM′ is a terminal component ofM if:

1. For all s, s′ ∈ S, a ∈ As, (s, a) ∈M′ and p(s′|s, a) > 0 implies s′ ∈ S′;

2. GM′ is strongly connected.

M′, a terminal component ofM, is maximal if there is no terminal componentM′′ with S′ ⊆ S′′,
E′ ⊆ E′′ and S′ ∪ E′ ( S′′ ∪ E′′.
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We have drawn above GM the underlying graph of a MDP M where an action a labels an edge
(s, s′) if p(s′|s, a) > 0.
Question 3. LetM be the MDP whose graph is drawn above. Find a maximal terminal compo-
nent ofM and a non maximal terminal component ofM.

Let ρ = s0, a0, s1, a1, . . . be an infinite path. Define ω(ρ) def
= {(s, a) | ∀i ∈ N ∃j ≥ i (sj , aj) = (s, a)},

the set of pairs state-action infinitely occurring in ρ.
Question 4. Let πππ be a policy and ρ = X0, Y0, X1, Y1, . . . the random path of an MDP. Prove
that:

Prπππ(ω(ρ) is a terminal component) = 1

Algorithm 1: Computing the maximal terminal components
MaxTerminalComponents(M)
Input: M, an MDP

Output: SM, the set of maximal terminal components ofM
Data: i integer, s, s′ states, a action, sub, sub′ subMDP, stack, a stack of subMDP

sub← {(s, a) | s ∈ S, a ∈ As}; Push(stack, sub); SM← ∅
while not Empty(stack) do

sub← Pop(stack); S′ ← {s | ∃(s, a) ∈ sub}
for (s, a) ∈ sub do

for s′ ∈ S do
if p(s′|s, a) > 0 and s′ /∈ S′ then sub← sub \ {(s, a)}

end
end
if sub 6= ∅ then

Compute the strongly connected components of Gsub, S1, . . . , SK
if K > 1 then

for i from 1 to K do sub′ ← {(s, a) ∈ sub | s ∈ Si}; Push(stack, sub′)
else SM← SM∪ sub

end
end
return SM

Question 5. Prove that algorithm 1 returns the set of maximal terminal components.
Question 6. Analyse the (worst-case) complexity of algorithm 1 w.r.t. |S| and |A|.

3 Minimising the reachability cost
LetM be an MDP with non negative rewards and an absorbing state se: Ase is a singleton whose
Dirac distribution leads to se and whose reward is null. We assume that there exist policies that
ensure to reach se with probability 1 and such policies are called winning policies. In this case,
there exists a stationary deterministic winning policy.
The reachability cost of a policy πππ (which may be infinite) is defined by:

Rπππ
def
=
∑
i∈N

Eπππ(r(Xi, Yi))

The corresponding vectorial cost (which depends on the initial state) is denoted Rπππ. The optimal
vectorial cost R∗ is defined by: for all s ∈ S, R∗[s] def

= infπππ(R
πππ[s] | πππ is winning). The reachability

cost problem consists to find the minimal reachability cost R∗ and an optimal winning policy.
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Question 7. Using the MDP figured below (with only Dirac distributions) show that a non
winning strategy can have a smaller reachability cost than any winning strategy.
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In the sequel, we assume that for all non winning policy πππ there exists s ∈ S such that: Rπππ[s] =∞.

Let the operator L on Rew def
= {v ∈ RS | v[se] = 0 ∧ ∀s ∈ S v[s] ≥ 0} be defined by:

∀s ∈ S L(v)[s] = min
a∈As

(
r(s, a) +

∑
s′∈S

p(s′|s, a)v[s′]

)

Question 8. Let v ∈ Rew be a fixpoint of L. Prove that v ≤ R∗.

Question 9. Let d∞ be a stationary policy. Show that Rd∞ =
∑
i∈N(Pd)

ird (using the notations
of the lecture notes).
Let d∞ be a winning policy. Since d∞ is stationary, one can build an ordering of S = {s1, . . . , sn}
such that s1 = se and for all si with i > 1 there exists αi < i such that Pd[i, αi] > 0. Let
p = min(min(Pd[i, αi] | i > 1), 12 ). Define v ∈ Rew by v[si] = 1− p2i for i > 1.

Question 10. Show that Pd
∞
v ≤ γv with γ def

= 1−p2n−1

1−p2n . Deduce that Rd∞ is finite.
Given d a decision rule, the operator Ld on Rew is defined by:

Ld(v) = rd +Pdv

Question 11. Let d∞ be a winning policy. Show that Rd∞ is a fixpoint of Ld.
Question 12. Let d be a decision rule such that there exists v ∈ Rew with Ld(v) ≤ v.
Show that d∞ is a winning policy. Hint: use the assumption about non winning policies.
Question 13. Let d∞ be a deterministic stationary winning policy such that L(Rd∞) � Rd∞ .
Let d′ be a deterministic decision rule such that L(Rd∞) = Ld′(R

d∞).
Show that Rd′∞ � Rd∞ .
Question 14. Deduce from the previous questions that there exists a winning deterministic sta-
tionary policy d∞ such that L(Rd∞) = Rd∞ and that d∞ is an optimal policy for the reachability
cost problem.
Question 15. Design a linear programming problem such that its solution is R∗.
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