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Groupes

G, un ensemble doté d’une loi interne ⊕ est un groupe si :

I ⊕ est associative : ∀a, b, c (a⊕ b)⊕ c = a⊕ (b⊕ c) ;
I Il existe un élément neutre : ∃0 ∀a a⊕ 0 = 0⊕ a = a ;
I Tout élément a un inverse : ∀a ∃ − a a⊕−a = −a⊕ a = 0.

Illustration. Soit Zn = {0, 1, . . . , n− 1} muni de l’addition modulo n.
Zn est un groupe avec pour tout i 6= 0, −i = n− i.

Soit |G| = n. n est dit l’ordre du groupe.

G est commutatif si ⊕ est commutative : ∀a, b a⊕ b = b⊕ a.

Notation. Soit k ∈ N et g ∈ G. On définit inductivement k · g ∈ G par :
0 · g = 0 et (k + 1) · g = k · g ⊕ g.
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Sous-groupes

Soit ∅ 6= S ⊆ G. S est un sous-groupe de G si ∀a, b ∈ S {−a, a⊕ b} ⊆ S.
Par conséquent S est aussi un groupe.

Soit g ∈ G, S ⊕ g = {a⊕ g | a ∈ S} est la classe de g (par S).

Propriétés. Soit n = |G| et m = |S|
I ∀g ∈ G, |S ⊕ g| = m ;
I L’ensemble des classes forme une partition de G ;
I Par conséquent m|n.

Illustration. Soit Zn avec n pair.

Alors l’ensemble {0, 2, 4, . . . , n− 2} est un sous-groupe de Zn
isomorphe à Zn

2
par i 7→ i

2 .

La classe de 1 est {1, 3, 5, . . . , n− 1}.
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Groupe et sous-groupe cyclique

G d’ordre n est cyclique s’il existe g ∈ G tel que :
G = {0, 1 · g, . . . , (n− 1) · g} et n · g = 0.

g est appelé un générateur de G.

Zn est cyclique.

Tout groupe cyclique d’ordre n est isomorphe à Zn par i · g 7→ i.

Soit G un groupe fini et g ∈ G.
S(g) = {0, g, 2 · g, . . .} est un sous-groupe cyclique.

ord(g), l’ordre de g, est l’ordre de S(g) et vérifie ord(g) = min(k | k · g = 0).

0 est l’unique élément d’ordre 1.

Observation. L’ordre de m ∈ Z∗n est égal à n
pgcd(m,n) .

Le nombre d’Euler Φ(n) est le nombre de m ∈ Zn t.q. l’ordre de m soit égal n :
Φ(n) est le nombre de 1 ≤ m ≤ n tels que pgcd(m,n) = 1.
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Relation d’Euler
Soit d un diviseur de n, g ∈ Zn est d’ordre d si

1. dg = 0 mod n ;
2. ∀0 < d′ < d d′g 6= 0 mod n.

1○ dg = 0 mod n⇔ ∃k dg = kn⇔ ∃k g = k nd ⇔ g ∈ S(nd )

2○ On note g = snd avec 0 ≤ s < d.

∀0 < d′ < d d′s
n

d
6= 0 mod n

⇔ ∀0 < d′ < d d′s
n

d
6= 0 mod d

n

d
⇔ ∀0 < d′ < d d′s 6= 0 mod d

⇔ s 6= 0 ∧ pgcd(s, d) = 1

Par conséquent g ∈ Zn est d’ordre d ssi g = snd avec 0 < s < d et pgcd(s, d) = 1.
Il y a donc Φ(d) éléments de Zn d’ordre d. Puisque tout élément a un ordre :

n =
∑
d|n Φ(d)
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Action d’un groupe sur un ensemble (1)
Soit E un ensemble fini et G un groupe fini de loi ∗

et d’élément neutre 1.

⊗ de G× E dans E est une action de G sur E si :
(g ∗ g′)⊗ e = g ⊗ (g′ ⊗ e) et 1⊗ e = e.

Oe, l’orbite de e sous l’action de G est définie par Oe = {g ⊗ e | g ∈ G}.

L’ensemble des orbites forme une partition de E.

Preuve.

Pour tout e puisque 1⊗ e = e, E =
⋃
e∈E Oe.

Soit e et e′ tels que ∃e′′ ∈ Oe ∩Oe′ .

e′′ = g ⊗ e = g′ ⊗ e′. Donc e = (g−1 ∗ g′)⊗ e′

ce qui implique Oe ⊆ Oe′ .

Par symétrie, Oe = Oe′ .
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Action d’un groupe sur un ensemble (2)
Ste, le stabilisateur de e, un sous-ensemble de G est défini par :

Ste = {g ∈ G | g ⊗ e = e}.
Ste est un sous-groupe :

I 1 ∈ Ste car 1⊗ e = e

I Soit g, g′ ∈ Ste, (g ∗ g′)⊗ e = g ⊗ (g′ ⊗ e) = g ⊗ e = e. Donc g ∗ g′ ∈ Ste.
e = (g−1 ∗ g)⊗ e = g−1 ⊗ (g ⊗ e) = g−1 ⊗ e. Donc g−1 ∈ Ste.

|Oe| = |G|
|Ste|

Preuve.
Définissons g ∼ g′ si ∃h ∈ Ste g′ = h ∗ g
g ∼ g avec h = 1 ; g = h−1 ∗ g′ donc ∼ est symétrique.
g′′ = h′ ∗ g′ implique g′′ = (h′ ∗ h) ∗ g donc ∼ est transitive et une équivalence.
La classe de g est {g′ ∗ g | g′ ∈ Ste} et g′ ∗ g = g′′ ∗ g implique :

g′′ = g′′ ∗ g ∗ g−1 = g′ ∗ g ∗ g−1 = g′.
Donc les classes ont même cardinal |Ste| et le nombre de classes est |G||Ste| .

Soit H un ensemble de représentants de classe.
Alors h 7→ h⊗ e est une bijection de H dans Oe.
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Corps gauche
Un ensemble F contenant 0 et 1 6= 0, muni des lois ⊕ et ∗ est un corps gauche si :

I F muni de ⊕ est un groupe commutatif dont 0 est l’élément neutre ;
I F∗ = F \ {0} muni de ∗ est un groupe dont 1 est l’élément neutre ;
I ∗ est distributive par rapport à ⊕ :
∀a, b, c a ∗ (b⊕ c) = (a ∗ b)⊕ (a ∗ c) ∧ (b⊕ c) ∗ a = (b ∗ a)⊕ (c ∗ a)

Si ∗ est commutative, F est un corps commutatif.

Illustration. Soit p un nombre premier.

Fp = {0, 1, . . . , p− 1} muni de + et de × modulo p est un corps commutatif.

Preuve.

Soit a 6= 0 et fa(b) = ab mod p. fa(F∗p) ⊆ F∗p car b 6= 0⇒ ab mod p 6= 0.

fa est injective donc bijective car b 6= b′ ⇒ a(b− b′) mod p 6= 0.

Donc ∃b fa(b) = ab mod p = 1.

Observation. Si p n’est pas premier alors Fp n’est pas un corps.
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Sous-corps
Soit F un corps. F′ ⊆ F est un sous-corps si :

I F′ muni de ⊕ est un sous-groupe de F ;
I F′∗ muni de ∗ est un sous-groupe de F∗.

Dans la suite, F est un corps gauche fini.

Soit a ∈ F. Ga = {x ∈ F |∈ F x ∗ a = a ∗ x}.

G0 = G1 = F. Soit a /∈ {0, 1}, {0, 1} ⊆ Ga.

Soit b, c ∈ G∗a.
I 0 = (b⊕−b) ∗ a = b ∗ a⊕−b ∗ a = a ∗ b⊕−b ∗ a donc −b ∗ a = a ∗ −b ;
I (b⊕ c) ∗ a = b ∗ a⊕ c ∗ a = a ∗ b⊕ a ∗ c = a ∗ (b⊕ c) ;
I a−1 ∗ b ∗ a ∗ b−1 = a−1 ∗ a ∗ b ∗ b−1 = 1 d’où a ∗ b−1 = (a−1 ∗ b)−1 = b−1 ∗ a ;
I a ∗ b ∗ c = b ∗ a ∗ c = b ∗ c ∗ a.

Ga est donc un sous-corps de F.

G =
⋂
a∈F Ga est un corps commutatif appelé le centre de F.
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Espaces vectoriels à gauche
Soit (E,+) un groupe commutatif, F un corps gauche

et · une application de F× E dans E.

E est un F-espace vectoriel à gauche si λ, µ ∈ F et e, f ∈ E :

I 1 · e = e ;
I λ · (e+ f) = λ · e+ λ · f ;
I (λ+ µ) · e = λ · e+ µ · e ;
I (λ ∗ µ) · e = λ · (µ · e).

Soit F = {ei}i∈I une famille de E, Gen(F) = {e | ∃{λi}i∈I e =
∑
i∈I λi · ei}.

F est libre si pour toute famille {λi}i∈I de F,∑
i∈I

λi · ei = 0⇒ ∀i ∈ I λi = 0

F est génératrice si E = Gen(F).

F est une base si elle est libre et génératrice.
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Dimension d’un espace vectoriel (1)

Soit une famille libre maximale F = {ei}1≤i≤d. Alors :
I F est une base ;
I Toute famille libre maximale F ′ = {e′j}1≤j≤d′ vérifie d′ = d.

Si une telle famille existe alors d est la dimension finie de E.

Preuve.

Supposons que F ne soit pas une base : soit f /∈ Gen(F).

Montrons que F ∪ {f} est libre. Soit
∑
i∈I λi · ei + λ · f = 0.

Si λ 6= 0 alors f =
∑
i∈I(λ

−1 ∗ −λi) · ei ∈ Gen(F).

D’où λ = 0 ce qui implique pour tout i, λi = 0.



12/32

Dimension d’un espace vectoriel (2)
Preuve (suite). On note I = {1, . . . , d′}.
Montrons que pour tout 0 ≤ k ≤ d,
il existe une base Fk = {e′j}j∈Ik ∪ {ei}i≤k tel que |I \ Ik| = k.

F0 = F ′ vérifie le cas de base.

Supposons l’existence prouvée pour k < d. ek+1 =
∑
j∈Ik µj · e

′
j +

∑
i≤k νi · ei.

Puisque F est libre, ∃jk+1 µjk+1
6= 0. Soit Ik+1 = Ik \ {jk+1}.

Donc e′jk+1
= µ−1jk+1

· ek+1 −
∑
j∈Ik+1

µ−1jk+1
∗ µj · e′j −

∑
i≤k µ

−1
jk+1
∗ νi · ei.

Donc Fk+1 est génératrice.

Soit
∑
j∈Ik+1

θ′j · e′j +
∑
i≤k+1 θi · ei = 0. D’où :

θ′k+1 ∗ µjk+1
· e′jk+1

+
∑
j∈Ik+1

(θ′j + θ′k+1 ∗ µj) · e′j +
∑
i≤k(θi + θ′k+1 ∗ νi) · ei = 0

Puisque Fk est libre,
θ′k+1 = 0 ce qui implique pour tout j ∈ Ik+1, θ′j = 0 et tout i ≤ k, θi = 0.
Donc Fk+1 est libre.

Fd = {e′j}j∈Id ∪ F avec |Id| = d′ − d. D’où d′ ≥ d.
Puisque F est maximale, Id = ∅ et d′ = d.
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Sous-corps et espaces vectoriels

Soit F′ un sous-corps de F, un corps gauche fini.

En considérant ∗ comme une opération de F′ × F dans F,

on vérifie que F est un F′-espace vectoriel.

Puisque F est fini sa dimension d est finie.

On note q = |G|.

Soit F′ un corps tel que G ⊆ F′ ⊆ F.

F′ est un G-espace vectoriel de dimension d′. D’où |F′| = qd
′
.

F est un F′-espace vectoriel à gauche de dimension d′′.

D’où |F| = (qd
′
)d
′′

= qd
′d′′ et d = d′d′′.
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Polynômes
Soit P =

∑
i≤d piX

i, un polynôme de degré deg(P ) = d (i.e., pd 6= 0)
à coefficients dans un corps commutatif F,

I P est unitaire si pd = 1 ;
I Q est un diviseur de P s’il existe R tel que P = QR.
Q est un facteur de P s’il est unitaire et 1 ≤ deg(Q) < d ;

I P tel que deg(P ) > 0 est irréductible s’il n’a pas de facteurs ;
I P est premier s’il est irréductible et unitaire.

Tout polynôme unitaire de degré non nul admet une unique factorisation
(à l’ordre près) en polynômes premiers P =

∏
i∈I Pi.

Illustration.

X2 +X ∈ F2[X] se factorise en X(X + 1).

X2 +X + 1 ∈ F2[X] est irréductible.

X2 + 1 ∈ F2[X] se factorise en (X + 1)2.
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Racines niemes de l’unité
Soit n > 0. On note ωk = e2ikπ/n ∈ C et Un = {ωk | 0 ≤ k < n}.

(Un,×) est un groupe isomorphe à (Zn,⊕).

Le polynôme Xn − 1 ∈ C[X] a pour racines les éléments de Un. D’où :

Xn − 1 =
∏

0≤k<n

X − ωk

Prn = {ωk | ord(ωk) = n} est l’ensemble des racines primitives.

Le polynôme cyclotomique d’ordre n est défini par Φn =
∏
ωk∈Prn X − ωk.

D’où : Xn − 1 =
∏
d|n Φd.

Φd est à coefficients entiers.

Preuve. Par récurrence : Φ1 = X − 1.

Φn est le résultat de la division de Xn − 1 par∏
d|n,d<n Φd, un polynôme unitaire.
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Une action de F∗ sur lui-même
On définit l’opération ◦ de (F∗, ∗) sur lui-même par : g ◦ h = g ∗ h ∗ g−1

◦ est une action car :
(g ∗ g′) ◦ h = g ∗ g′ ∗ h ∗ g′−1 ∗ g−1 = g ∗ (g′ ◦ h) ∗ g′−1 = g ◦ (g′ ◦ h)

Par définition, Sth = G∗h et pour tout g ∈ G∗, Og = {g}

Soit {g1, . . . , gK}, un ensemble de représentants par orbite

non réduite à un singleton.

En appliquant le résultat sur les orbites :

|F∗| = |G∗|+
∑
i≤K

|F∗|
|G∗gi |

Puisque Ggi est un G-espace vectoriel,

il existe 1 ≤ di < d tel que |Ggi | = qdi . D’où :

qd − 1 = q − 1 +
∑
i≤K

qd − 1

qdi − 1
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Théorème de Wedderburn
F est un Ggi-espace vectoriel, donc di|d.

Soit le polynôme F = Xd − 1−
∑
i≤K

Xd−1
Xdi−1 (F (q) = q − 1 voir plus haut).

Xd − 1

Xdi − 1
=

∏
d′ 6=di,d′|d

Φd′

Par conséquent Φd divise F .

On note F = ΦdQ avec Q ∈ Z[X] puisque Φd est unitaire.

0 < q − 1 = Φd(q)Q(q)⇒ Q(q) 6= 0⇒ |Q(q)| ≥ 1⇒ |Φd(q)| ≤ q − 1

Pour tout n ≥ 1, |Φn(q)| =
∏
ωk∈Prn

|q − ωk|.

• • •
•

0 1 q

ωk

q − 1

|q − ωk|

Or pour tout k, |q − ωk| ≥ 1 et |q − ωk| = 1 ssi k = 0. D’où d = 1 et F = G.

Tout corps gauche fini est commutatif.
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Caractéristique d’un corps
Soit le sous-groupe (S(1),⊕) de F. Alors :

p = |S(1)| est premier et (S(1),⊕, ∗) est un sous-corps de F isomorphe à Fp.

Preuve. (S(1),⊕) est isomorphe à (Zp,+).
Pour tout a · 1, b · 1 ∈ S(1)∗, a · 1 ∗ b · 1 = (ab mod p) · 1 ∈ S(1)∗

car (F∗, ∗) est un groupe. Donc ab mod p 6= 0, ce qui implique que p est premier.

Soit fa(b · 1) = a · 1 ∗ b · 1 = (ab mod p) · 1. fa(S(1)∗) ⊆ S(1)∗.
Soit c · 1 ∈ S(1)∗ tel que fa(b · 1) = fa(c · 1). Donc (a(b− c) mod p) · 1 = 0.
Puisque fa(S(1)∗) ⊆ S(1)∗ et p premier, b = c. Donc fa est injective puis bijective.
D’où ∃a−1 · 1 ∈ S(1)∗ a · 1 ∗ a−1 · 1 = 1. (S(1),⊕, ∗) est donc un sous-corps de F.

Puisque a · 1 ∗ b · 1 = (ab mod p) · 1, (S(1)∗, ∗) est isomorphe à (Z∗p,×).

p est appelée la caractéristique de F.

Corollaire. Tout corps F tel que p = |F| est premier est isomorphe à Fp.
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(F∗q, ∗) est cyclique
Soit Fq un corps à q éléments et d un diviseur de q − 1.

Il y a au plus un sous-groupe cyclique multiplicatif F∗q d’ordre d car :

I Les d éléments d’un tel sous-groupe sont des racines de Xd − 1 ;
I Il y a au plus d racines de Xd − 1.

Dans cet éventuel sous-groupe il y a exactement Φ(d) éléments d’ordre
multiplicatif d. Donc le nombre d’éléments de F∗q est inférieur ou égal à∑

d|q−1

Φ(d)

Puisque q − 1 =
∑
d|q−1 Φ(d) cela implique que :

I Pour tout diviseur de q − 1
il y a un unique sous-groupe multiplicatif cyclique d’ordre d ;

I et donc il y a Φ(q − 1) > 0 éléments d’ordre q − 1 ;
I et le sous-groupe multiplicatif F∗q est cyclique.
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Factorisation de Xq −X
Soit Fq un corps fini de cardinal q et β ∈ F∗q .

L’ordre du groupe multiplicatif S(β) = {1, β, β2, . . .} vérifie
I β|S(β)| = 1 ;
I |S(β)| divise q − 1 qui implique βq−1 = 1.

D’où les factorisations dans Fq[X] :

Xq−1 − 1 =
∏
β 6=0

X − β et Xq −X =
∏
β∈Fq

X − β

Soit p la caractéristique de Fq, Fp ⊆ Fq
et
∏
i≤kQi la factorisation de Xq −X dans Fp[X].

Alors Qi =
∏
j≤ki X − βi,j tel que pour tout β ∈ Fq,

il existe un unique (i, j) tel que βi,j = β.

Qi est appelé le polynôme minimal de β (aussi noté Qβ)
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Propriétés d’un polynôme minimal

Qβ le polynôme minimal de β vérifie :
I Pour tout Q 6= Qβ , polynôme unitaire t.q. Q(β) = 0, deg(Qβ) < deg(Q) ;
I Pour tout Q t.q. Q(β) = 0, Qβ divise Q.

Preuve. Le cas β = 0 est évident car Q0 = X. Soit β 6= 0.

• Soit Q 6= Qβ , polynôme unitaire tel que Q(β) = 0 et deg(Q) soit minimal.
Soit Qβ = Q ·D +R la division euclidienne de Qβ par Q,
Puisque deg(R) < deg(Q) et R(β) = 0, R = 0. Donc Q divise Qβ .
Puisque Qβ est irréductible et Q est unitaire, Q = Qβ .

• Soit Q tel que Q(β) = 0,
Soit Q = Qβ ·D +R la division euclidienne de Q par Qβ ,
Puisque deg(R) < deg(Qβ) et R(β) = 0, R = 0. Donc Qβ divise Q.
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Fp[Q]
Soit Q ∈ Fp[X], polynôme premier avec d = deg(Q).

Fp[Q] est l’ensemble des polynômes de degré inférieur à d
muni de l’addition notée ⊕ et de la multiplication modulo Q notée ∗.

Fp[Q] est un corps.

Preuve.

• Soit R ∈ Fp[Q]∗ et pour tout S ∈ Fp[Q]∗, fR(S) = R ∗ S.
fR(Fp[Q]∗) ⊆ Fp[Q]∗ car R ∗ S = 0 implique ∃S′ R · S = Q · S′.

Puisque Q est irréductible
et que la factorisation de R · S est le produit de la factorisation de R et de S,
Q divise R ou S ce qui implique que R ou S est nul.

• fR est injective donc bijective car R ∗ S = R ∗ S′

implique R ∗ (S − S′) = 0 implique S − S′ = 0.

• Donc pour tout R ∈ Fp[Q]∗, il existe R−1 ∈ Fp[Q]∗ tel que R ∗R−1 = 1.
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Fp[β]
Soit β ∈ F∗q avec d = deg(Qβ).

Fp[β] = {P (β) | P ∈ Fp[X]}.

Fp[β] est un corps d’ordre pd isomorphe à Fp[Qβ ].

Preuve.
• Soit P ∈ Fp[X] et P = DQβ +R la division euclidienne de P par Qβ .
Alors P (β) = R(β). D’où Fp[β] = {P (β) | P ∈ Fp[X] ∧ deg(P ) < d}.

• Soit R et S de degré inférieur à d avec R(β) = S(β)⇔ (R− S)(β) = 0.
Puisque P 6= 0 ∧ P (β) = 0⇒ deg(P ) ≥ d, R− S = 0.

• Soit f de Fp[Qβ ] dans Fp[β] définie par f(P ) = P (β).
f est un isomorphisme car :

I f est bijective ;
I (P ⊕Q)(β) = P (β) +Q(β) ;
I Soit P,Q ∈ Fp[Qβ ]. PQ = P ∗Q+DQβ pour un certain D.

Donc (P ∗Q)(β) = P (β) ∗Q(β) +D(β) ∗Qβ(β) = P (β) ∗Q(β).
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Vers une caractérisation des corps finis

Soit Fq un corps d’ordre q et p sa caractéristique.

Si β est un générateur de F∗q alors Fp[β] = Fq. D’où :

Pour tout corps F, il existe d tel que |F| = pd avec p caractéristique de F

Questions.

Deux corps F et F′ tels que |F| = |F′| sont-ils isomorphes ?

Pour tout p premier et d ∈ N∗, existe-t-il un corps F avec |F| = pd ?
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Unicité de Fq
Soit Q ∈ Fp[X], polynôme premier avec 1 < d = deg(Q) et q = pd.

|Fp[Q]∗| = q − 1. Donc tout élément β de Fp[Q]∗ vérifie βq−1 − 1 = 0.

Soit β = X, Xq−1 − 1 = 0 dans Fp[Q] et dans Fp[X] : ∃R Xq−1 − 1 = QR.

Donc Q divise Xq−1 − 1.

Soit Fq un corps d’ordre q. D’après la factorisation de Xq−1 − 1 dans Fq[X] ,

Q =
∏
i≤dX − βi avec les βi ∈ F∗q tous distincts.

Pour tout i, Fp[βi] est isomorphe à Fp[Q].

Puisque |Fp[Q]| = |Fq|, Fp[βi] = Fq. D’où :

Pour tout p premier et d ∈ N, il existe au plus un corps F avec |F| = pd

(à isomorphisme près)
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De Fq[X ] à Fp[X ]

Soit Fq un corps d’ordre q = pd.

Soit α, β ∈ Fq.

(α+ β)p =
∑

0≤i≤p
(
p
i

)
αi ∗ βp−i = αp + βp

(α− β)p = αp + (−1)p ∗ βp = αp − βp car (−1)p = −1 dans Fp.

Par récurrence, pour tout n,

(α+ β)p
n

=
(

(α+ β)p
n−1
)p

=
(
αp

n−1

+ βp
n−1
)p

= αp
n

+ βp
n

Soit Q =
∑
i≤n qiX

i ∈ Fq[X], Qp =
∑
i≤n q

p
i (Xp)i.

On rappelle que Fp = {β | β racine de Xp −X}.

Donc Qp = Q(Xp) ssi Q ∈ Fp[X]

.
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Racines d’un polynôme minimal
Soit Qβ ∈ Fp[X] un polynôme minimal de Fq.

Alors Qβ =
∏

0≤i<nX − βp
i

où n divise d. De plus Qβ divise Xpn −X.

Preuve. Qβ(βp) = Qpβ(β) = 0.

Par récurrence, β, βp, βp
2

, . . . , βp
d

= β sont des racines de Qβ .

Soit n le plus petit entier t.q. βp
n

= β. Si ∃1 ≤ i < j < n tel que βp
i

= βp
j

.
Alors β = βp

n+i−j

contredisant la définition de n.
Donc |{βpi}0≤i<n| = n et deg(Qβ) ≥ n.
Ainsi βp

k

= β ssi k est un multiple de n. Donc n divise d.

Soit P =
∏

0≤i<nX − βp
i ∈ Fq[X].

P p =
∏

0≤i<n(X − βpi)p =
∏

0≤i<nX
p − βpi+1

= P (Xp)

Donc P ∈ Fp[X]. Puisque P (β) = 0, Qβ divise P et aussi Xpn −X.

Donc n = deg(P ) ≤ deg(Qβ) ≤ deg(P ). D’où deg(P ) = deg(Qβ).

Puisque P est unitaire et Qβ est le polynôme minimal de P , Qβ = P .
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Polynôme dérivé
Soit p premier et P =

∑
i≤k piX

i ∈ Fp[X]. P ′ ≡
∑
i≤k(ipi mod p)Xi−1.

Observation. P ′ = 0 si ∃` k = `p et P =
∑
i≤` piX

pi.

Dans ce cas, P =
(∑

i≤` piX
i
)p

.

Soit la factorisation de P = pk
∏
j≤mR

αj

j avec pour tout j, αj ≥ 1.

Alors P ′ = pk
∑
j≤m(αj mod p)R′jR

αj−1
j

∏
j′ 6=j R

αj′

j′ .

Pour tout j, αj > 1 ssi Rj divise P ′.

Preuve.

• Pour tout k 6= j, Rj divise le terme (αk mod p)R′kR
αk−1
k

∏
j′ 6=k R

αj′

j′ .

• Si αj > 1, Rj divise le terme (αj mod p)R′jR
αj−1
j

∏
j′ 6=j R

αj′

j′ .

• Si αj = 1, Rj ne divise pas le terme R′j
∏
j′ 6=j R

αj′

j′

car deg(R′j) < deg(Rj) et R′j 6= 0 (d’après l’observation ci-dessus).
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Factorisation de Xpd −X
Soit p premier et d ≥ 1.

Soit Q ∈ Fp[X] un polynôme premier de degré n t.q. d = kn.

Soit P ∈ Fp[X]. P mod Q ∈ Fp[Q] vérifie P p
n

mod Q = P mod Q.

P p
kn

mod Q = (P p
(k−1)n

)p
n

mod Q = P p
(k−1)n

mod Q = · · · = P mod Q.

Soit P = X, Xpd −X = 0 mod Q. D’où :

Tout polynôme premier dont le degré divise d divise Xpd −X.

(Xpd −X)′ = −1. D’où :

Xpd −X est le produit sans répétition
des polynômes premiers dont le degré divise d.
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Existence de polynômes premiers
Soit N(n) le nombre de polynômes premiers dans Fp[X] de degré n.

N(1) = |{X − β | β ∈ Fp}| = p.

Puisque Xpd −X est le produit sans répétition des polynômes premiers
dont le degré divise d. Pour tout d ≥ 1, pd =

∑
n|d nN(n) (1)

pd/2(pd/2 − d/2) ≤ dN(d) ≤ pd

Pour tout d ≥ 1, N(d) > 0.

Preuve.

D’après (1) pd ≥ dN(d) et pd = dN(d) +
∑

n<d
n|d

nN(n) ≤ dN(d) + (d/2)pd/2.

D’où dN(d) ≥ pd − (d/2)pd/2 = pd/2(pd/2 − d/2).

Si d = 2 et p = 2 alors pd/2 − d/2 = 2− 1 > 0.

Puisque pd/2 − d/2 est croissante par rapport à p et d,

pour tout d ≥ 1, N(d) > 0.
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Test d’irréductibilité de Rabin
Un polynôme P ∈ Fp[X] de degré n est irréductible si et seulement si :

I P divise Xpn −X ;
I Pour tout 1 ≤ m < n tel que m|n, P et Xpm −X sont premiers entre eux.

Preuve. Sans perte de généralité, on suppose P unitaire.
• Soit P premier.

Puisque Xpn −X est le produit des polynômes premiers
dont le degré divise n, P divise Xpn −X.

Puisque Xpm −X est le produit des polynômes premiers
dont le degré divise m < n, P et Xpm −X sont premiers entre eux.

• Soit P satisfaisant le critère de Rabin.

Puisque P divise Xpn −X, P est soit :

I un polynôme premier de degré n ;
I un produit de polynômes premiers Q t.q. deg(Q)|n ∧ deg(Q) < n.

Puisque pour tout 1 ≤ m < n tel que m|n,
P et Xpm −X sont premiers entre eux, le deuxième cas est exclus.
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Caractérisation des corps finis

Pour tout q ∈ N, il y a un corps d’ordre q si et seulement si

q = pd pour p premier et d ≥ 1.

Ce corps est unique à isomorphisme près et il est isomorphe

au corps Fp[Q] pour tout Q ∈ Fp[X], polynôme premier de degré d.


