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Groupes

G, un ensemble doté d'une loi interne @ est un groupe si :

» @ est associative : Va,b,c (a®b) Dc=aP (bdc);
» |l existe un élément neutre : O Va a ®0=0Pa=a;

» Tout élément a uninverse :Va 3—aa® —a=—a®a=0.

llustration. Soit Z,, = {0,1,...,n — 1} muni de 'addition modulo n.
Zy, est un groupe avec pour tout i # 0, —i =n — 1.

Soit |G| = n. n est dit I'ordre du groupe.
G est commutatif si @& est commutative : Va,b a®b=b& a.

Notation. Soit £ € N et g € G. On définit inductivement k - g € G par :
0-g=0et(k+1)-g=k-gdyg.



Sous-groupes

Soit ) £ S C G. S est un sous-groupe de G si Va,b € S {—a,a® b} C S.
Par conséquent S est aussi un groupe.

Soitge G, S®g={a®g|ac S} estlaclasse de g (par S).
Propriétés. Soit n = |G| et m = | 5]
» VgeG, |S®gl=m;

» L'ensemble des classes forme une partition de G ;

» Par conséquent m|n.

lllustration. Soit Z,, avec n pair.
Alors I'ensemble {0,2,4,...,n — 2} est un sous-groupe de Z,,
isomorphe a Zz par i — %

La classe de 1 est {1,3,5,...,n — 1}.



Groupe et sous-groupe cyclique

G d'ordre n est cyclique s'il existe g € G tel que :
G={0,1-g,...,(n—1)-gtetn-g=0.

g est appelé un générateur de G.

Z,, est cyclique.

‘Tout groupe cyclique d'ordre n est isomorphe a Z,, pari-g — 1. ‘

Soit G un groupe fini et g € G.
S(g) ={0,9,2-g,...} est un sous-groupe cyclique.

ord(g), I'ordre de g, est I'ordre de S(g) et vérifie ord(g) = min(k | k- g = 0).
0 est I'unique élément d'ordre 1.

Observation. L'ordre de m € Z;, est égal a YRR

Le nombre d’Euler ®(n) est le nombre de m € Z,, t.q. I'ordre de m soit égal n :
®(n) est le nombre de 1 < m < n tels que pged(m,n) = 1.



Relation d'Euler

Soit d un diviseur de n, g € Z,, est d'ordre d si

1. dg=0 mod n;
2.V0<d <ddg#0 modn.

Ddg=0 modne3kdg=kns3kg=k% < geS(%)
) On note g = s% avec 0 < 5 < d.

V0<d’<dd’s%7é0 mod n
n

@V0<d/<dd/s%7é0 mod d-

sV0<d <dds#0 modd
< s #£0Apged(s,d) =1

Par conséquent g € Z,, est d'ordre d ssi g = s% avec 0 < s < d et pgcd(s,d) = 1.
Il'y a donc ®(d) éléments de Z,, d'ordre d. Puisque tout élément a un ordre :

n =2 ap 2(d)




Action d'un groupe sur un ensemble (1)

Soit E un ensemble fini et G un groupe fini de loi *

et d'éléement neutre 1.

® de G X F dans E est une action de G sur E si :
(gxg)@e=9gR(¢J®e)etlRe=c.

O., l'orbite de e sous I'action de G est définie par O, = {g® e | g € G}.

‘ L’ensemble des orbites forme une partition de E. ‘

Preuve.

Pour tout e puisque 1® e =¢, £ =J,cp Oc

Soit e et ¢’ tels que Je” € O, N O,.
"=ge=g ®e . Donce=(¢g71*xg)®e¢

ce qui implique O, C O, .

Par symétrie, O, = O,/.



Action d'un groupe sur un ensemble (2)
St., le stabilisateur de e, un sous-ensemble de G est défini par :
Ste={g€G|g®@e=c¢}.
St est un sous-groupe :
» leSt,carl®e=c¢
» Soit g,9' € Ste, (9% 9 ) ®e=9g®R (¢ ®e)=g®e=ce. Donc gx*g € St..
e=(gl*g)®e=g'®(g®e)=g ' ®e. Donc g~! € St..

G
|Oc| = \J’;‘tl|

Preuve.

Définissons g ~ ¢’ si Gh € Ste ¢ = hxyg

g~gavech=1; g=h"!xg donc ~ est symétrique.

g’ =R x g implique ¢” = (k' % h) * g donc ~ est transitive et une équivalence.

La classe de g est {¢' xg | ¢’ € St.} et ¢’ x g = ¢" * g implique :
g//:g//*g*g—l:g/*g*g—lzg/-

Donc les classes ont méme cardinal |St.| et le nombre de classes est %

Soit H un ensemble de représentants de classe.

Alors h — h ® e est une bijection de H dans O..



Corps gauche
Un ensemble F contenant 0 et 1 # 0, muni des lois & et x est un corps gauche si :
» F muni de & est un groupe commutatif dont O est I'élément neutre ;
» F* =T\ {0} muni de * est un groupe dont 1 est |'élément neutre;
» x est distributive par rapport a @ :
Va,b,ca*x (b@c)=(axb)®(axc)AN(bdc)xa= (bxa)® (c*xa)
Si * est commutative, I est un corps commutatif.
lllustration. Soit p un nombre premier.

F,={0,1,...,p— 1} muni de + et de x modulo p est un corps commutatif.

Preuve.

Soit a # 0 et fo(b) = ab mod p. fo(FF;) C Fy car b # 0 = ab mod p # 0.
fa est injective donc bijective car b # b = a(b—b') mod p # 0.

Donc 3b f,(b) = ab mod p = 1.

Observation. Si p n'est pas premier alors I, n'est pas un corps.



Sous-corps

Soit IF un corps. F’ C IF est un sous-corps si :
» [/ muni de @ est un sous-groupe de IF;
» F’* muni de * est un sous-groupe de F*.

Dans la suite, IF est un corps gauche fini.

Soita e F. G, ={zxcF|eFr*xa=axzx}.
Go =Gy, =TF. Soit a ¢ {0,1}, {0,1} C G,.
Soit b,c € G}.
»0=(b®-b)xa=bxa®—-bxa=axb® —bxadonc —bxa=ax—b;
» (b@c)xa=brxadcrxa=axbdaxc=ax*(bdc);
» o lxbxaxb l=a"txaxbxb ! =1dovaxb!=(atxb)"t=b"1txa;

» axbxc=bxaxc=bx*xcx*a.

G, est donc un sous-corps de F.

G = (Ner Ga est un corps commutatif appelé le centre de IF.



Espaces vectoriels a gauche

Soit (E,+) un groupe commutatif, F un corps gauche
et - une application de F x F dans E.
E est un F-espace vectoriel a gauchesi \,ucFete, f€ E:
» l-e=c¢e;
»Ae+fl=A-e+ A f;
» (A +p)-e=X-et+p-e;
> (Axp)-e=A-(u-e).
Soit F = {e;}ier une famille de £, Gen(F) = {e | H{ Ni}ier e = D ;c; Ni - €}
F est libre si pour toute famille {\;};cr de T,

Z/\i'ei:0:>ViEI)\i:0
iel
F est génératrice si E = Gen(F).

F est une base si elle est libre et génératrice.



Dimension d'un espace vectoriel (1)

Soit une famille libre maximale F = {e;}1<i<q. Alors :
» F est une base;
> Toute famille libre maximale 7' = {e’ }1<;j<a vérifie d’' = d.

Si une telle famille existe alors d est la dimension finie de E.
Preuve.

Supposons que F ne soit pas une base : soit f ¢ Gen(F).
Montrons que F U {f} est libre. Soit Y, ., Aj-e; +A- f =0.
Sid#0Oalors f =3, (A % =)\)-e; € Gen(F).

D'ot A = 0 ce qui implique pour tout 7, A; = 0.



Dimension d'un espace vectoriel (2)

Preuve (suite). On note [ = {1,...,d'}.
Montrons que pour tout 0 < k < d,
il existe une base Fi, = {e’}jer, U {ei}ick tel que [T\ Ix| = k.

Fo = F' vérifie le cas de base.
Supposons I'existence prouvée pour k < d. ext1 = c; My €5+ Dy Vi €
Puisque F est libre, ij+1 Hjyia 75 0. Soit I}C+1 =1 \ {jk+1}.

-1 -1
Donc e]k+1 = Mﬂk+l Cht+1 — Zj€1k+1 Fjypy * Hj e; - Ziﬁk Hijppy * Vi Ci-
Donc Fj. 41 est génératrice.
Soit ey, ., 0] 5 e+ icp 0i-ei=0.Dou:
ki1 * s " €y T Zje[k+1(9j + Oy * ) €+ D (0 + 0, x Vi) e =0
Puisque F}, est libre,
0%+1 = 0 ce qui implique pour tout j € Ij11, 0, =0 et tout i <k, 6; = 0.
Donc Fi.1 est libre.
Fa=1{€;}jer, UF avec |[4] =d —d. Dot d’ > d.
Puisque F est maximale, I; = 0 et d' = d.



Sous-corps et espaces vectoriels

Soit F’ un sous-corps de IF, un corps gauche fini.
En considérant x comme une opération de ' x IF dans T,
on vérifie que F est un [F’-espace vectoriel.

Puisque T est fini sa dimension d est finie.

On note g = |G].

Soit F’ un corps tel que G C F' C F.

F’ est un G-espace vectoriel de dimension d’. D'ou |F'| = ¢%".
IF est un [F’-espace vectoriel & gauche de dimension d”.

D'ou [F| = (¢¥)% = ¢ et d = d'd".



Polynémes

Soit P =Y"._,pi X", un polyndme de degré deg(P) = d (i.e., pq # 0)
a coefficients dans un corps commutatif FF,
» P est unitaire si pg =1;

» () est un diviseur de P s'il existe R tel que P = QR.
@ est un facteur de P s'il est unitaire et 1 < deg(Q) < d;

» P tel que deg(P) > 0 est irréductible s'il n'a pas de facteurs;

» P est premier s'il est irréductible et unitaire.

Tout polynéme unitaire de degré non nul admet une unique factorisation
(a I'ordre pres) en polynémes premiers P = [[,.; P;.

lllustration.

X2 + X € Fo[X] se factorise en X (X + 1).
X2 4+ X +1 € Fo[X] est irréductible.

X2 41 € F5[X] se factorise en (X + 1)%.



Racines n'“" de |'unité
Soit n > 0. On note wy, = e**™/" € C et U, = {wyp | 0 < k < n}.
(Upn, x) est un groupe isomorphe a (Z,, ®).
Le polynéme X™ — 1 € C[X] a pour racines les éléments de U,,. D'ou :
Xt—1= [] X-w
0<k<n
Pr, = {wy | ord(wy) = n} est I'ensemble des racines primitives.

Le polyndme cyclotomique d’ordre n est défini par ®,, =[]

D'oti : X™ — 1 =[], ®a-

wr €Pry, X - Wk

‘de est a coefficients entiers. ‘

Preuve. Par récurrence : &; = X — 1.
®,, est le résultat de la division de X™ — 1 par

Hd|n,d<n ®g4, un polynéme unitaire.



Une action de F* sur lui-méme

On définit I'opération o de (F*, ) sur lui-méme par : goh =g*hx g~}

o est une action car :
(gxg)oh=gxg xhxg 'xg l=gx(g oh)xg ' =go(goh)
Par définition, St;, = G}, et pour tout g € G*, Oy = {g}
Soit {g1,...,9K}, un ensemble de représentants par orbite
non réduite 3 un singleton.

En appliquant le résultat sur les orbites :

* ]:F*
|1F|—|G|+Z'

<K ‘

Puisque G4, est un G-espace vectoriel,

il existe 1 < d; < d tel que |G,,| = ¢%. D'ou :

gt -1
_1l=qg—
¢'—1=q-14+) o
1<K



Théoreme de Wedderburn

F est un Gg,-espace vectoriel, donc d;|d.

Soit le polynéme FF = X% — 1 — ZigK % (F(q) = g — 1 voir plus haut).
X1
Xdi—1 d/;égd'dq)d/

Par conséquent @, divise F'.

On note F' = &,4Q avec Q € Z[X] puisque P4 est unitaire.

0<qg—1=24(q)Q(q) = Qq) #0=|Q(q)] > 1= [Py(q)] < qg—1
Pour tout n > 1, |®,,(q)| =[], epr, |7 — wkl.

&k |g— wkl
1 q—l q

Or pour tout k, | —wi| >1et|g—wg|=1ssik=0.Doud=1etF=0G.

‘Tout corps gauche fini est commutatif. ‘




Caractéristique d'un corps

Soit le sous-groupe (S(1),®) de F. Alors :

p = 1S(1)| est premier et (S(1),®, *) est un sous-corps de F isomorphe & FF,,.

Preuve. (S(1),®) est isomorphe a (Z,, +).

Pour tout a-1,b-1€ S(1)*, a-1%b-1=(ab mod p)-1 € S(1)*

car (F*,*) est un groupe. Donc ab mod p # 0, ce qui implique que p est premier.
Soit fo(b-1)=a-1%xb-1=(ab mod p)-1. f,(S(1)*) C S(1)*.

Soit ¢- 1 € S(1)* tel que fo(b-1) = fa(c-1). Donc (a(b—c¢) mod p)-1=0.
Puisque f,(S(1)*) C S(1)* et p premier, b = c. Donc f, est injective puis bijective.
Douda~t-1€S(1)*a-1xa"t-1=1.(S(1),d,*) est donc un sous-corps de F.
Puisque a-1%b-1 = (ab mod p) -1, (S(1)*, ) est isomorphe a (Z, x).

p est appelée la caractéristique de F.

Corollaire. Tout corps F tel que p = |F| est premier est isomorphe a F,,. ‘




(F;, *) est cyclique

Soit F; un corps a g éléments et d un diviseur de ¢ — 1.

Il'y a au plus un sous-groupe cyclique multiplicatif F; d'ordre d car :
» Les d éléments d'un tel sous-groupe sont des racines de X% —1;
» Il'y a au plus d racines de X% — 1.

Dans cet éventuel sous-groupe il y a exactement ®(d) élements d’ordre
multiplicatif d. Donc le nombre d'éléments de [, est inférieur ou égal a

> 2(d)
d|lg—1
Puisque ¢ — 1 = Zd|q_1 ®(d) cela implique que :

» Pour tout diviseur de ¢ — 1
il y a un unique sous-groupe multiplicatif cyclique d’ordre d;
» et doncily a ®(¢—1) > 0 élements d'ordre ¢ — 1;

> et le sous-groupe multiplicatif F;; est cyclique.



Factorisation de X7 — X

Soit IFy un corps fini de cardinal g et 3 € F}.

L'ordre du groupe multiplicatif S(3) = {1, 8, 32,...} vérifie
. BB 1,
» |S(B)| divise ¢ — 1 qui implique 3971 = 1.

Dot les factorisations dans Fy[X] :

Xt —1=][X-Betx'-Xx=][X-8
B0 BEF,

Soit p la caractéristique de F,, F, C F,
et [[,<, Qi la factorisation de X9 — X dans F,,[X].

Alors Q; = ngki X — Bi,; tel que pour tout 8 € F,
il existe un unique (7,7) tel que §; ; = 3.

‘Qi est appelé e polynéme minimal de 3 (aussi noté Q) ‘




Propriétés d’'un polynéme minimal

Q3 le polynéme minimal de § vérifie :
» Pour tout @ # Qg, polyndme unitaire t.q. Q(8) =0, deg(Qs) < deg(Q);
» Pour tout @ t.q. Q(B) =0, Qg divise Q.

Preuve. Le cas 8 = 0 est évident car Qg = X. Soit 8 # 0.

e Soit Q # @3, polyndme unitaire tel que Q(8) = 0 et deg(Q) soit minimal.
Soit @3 = @ - D + R la division euclidienne de Qg par @,

Puisque deg(R) < deg(Q) et R(8) =0, R = 0. Donc Q divise Q3.

Puisque Q3 est irréductible et () est unitaire, Q@ = Qg.

e Soit @ tel que Q(5) =0,

Soit Q@ = Qs - D + R la division euclidienne de @) par ()3,

Puisque deg(R) < deg(Qg) et R(8) =0, R = 0. Donc Qg divise Q.



F,|Q)

Soit Q) € F,[X], polynéme premier avec d = deg(Q).

F,[Q] est I'ensemble des polyndmes de degré inférieur a d
muni de I'addition notée & et de la multiplication modulo @ notée *.

’FP[Q] est un corps. ‘

Preuve.

e Soit R € F,[Q]* et pour tout S € F,[Q]*, fr(S)=R=*S.
fr(F,[Q]*) CF,[Q]* car R+ S =0 implique 38" R-S=Q-95".
Puisque @ est irréductible

et que la factorisation de R - S est le produit de la factorisation de R et de S,
Q divise R ou S ce qui implique que R ou S est nul.

e [ est injective donc bijective car R+ S = R* S’
implique R x (S —S’) = 0 implique S — 5" = 0.

e Donc pour tout R € F,[Q]*, il existe R™! € F,,[Q]* tel que R+ R~ = 1.



Fp|f]

Soit 3 € I}, avec d = deg(Qp).
Fp[8] = {P(B) | P € Fp[X]}.

FF,[3] est un corps d'ordre p? isomorphe a F,[Q3].

Preuve.
e Soit P € F,[X] et P = DQg + R la division euclidienne de P par Qg.
Alors P(3) = R(B). D'ou F,[8] = {P(B) | P € F,[X] A deg(P) < d}.
e Soit R et S de degré inférieur a d avec R(8) = S(8) < (R—5)(8) =0.
Puisque P # 0A P(8) = 0= deg(P) >d, R— S = 0.
e Soit f de IF,[Qs] dans F,,[3] définie par f(P) = P(pB).
f est un isomorphisme car :

» f est bijective;

> (PoQ)(B)=P(B)+Q(B);

» Soit P,Q € F,,[Qg]. PQ = P xQ + DQp pour un certain D.

Donc (P +Q)(8) = P(B) = Q(B) + D(8) x Qs(B) = P(B) * Q(B).



Vers une caractérisation des corps finis

Soit IF, un corps d'ordre ¢ et p sa caractéristique.

Si B est un générateur de I} alors F,[3] = F,. D'ou :

Pour tout corps F, il existe d tel que |F| = p? avec p caractéristique de F

Questions.
Deux corps F et F’ tels que |F| = |F’| sont-ils isomorphes ?

Pour tout p premier et d € N*, existe-t-il un corps IF avec |F| = p¢?



Unicité de I,

Soit Q € F,[X], polyndme premier avec 1 < d = deg(Q) et q = p®.

|F,[Q]*| = ¢ — 1. Donc tout élément 3 de F,[Q]* vérifie 3971 — 1 =0.

Soit =X, X97' —1=0dans F,[Q] et dans F,[X] : IR X?' — 1 =QR.
Donc @ divise X971 — 1.

Soit [, un corps d’ordre ¢. D'aprés la factorisation de X9~! — 1 dans F,[X] ,
Q= Hz‘ng — Bi avec les f3; € [}, tous distincts.

Pour tout ¢, F,,[3;] est isomorphe a F,[Q].

Puisque |F,[Q]| = |Fq|, Fp[8:] =F,. D'ou :

‘ Pour tout p premier et d € N, il existe au plus un corps F avec |F| = pd‘

(3 isomorphisme pres)



De F,[X] a F,[X]
Soit F, un corps d’ordre ¢ = p.

Soit a, B € F,,.
(@ +B)F = Epcicp (5o x 877" = aP + B7
(=B =aP + (=1)P P = aP — BP car (—1)P = —1 dans F,,.

Par récurrence, pour tout n,

. W1\ P e o1\ P n n
(a+ﬁ)17 :<(a+ﬁ)p 1) :<ap 1+ﬁp 1> = aP _A'_ﬁp
Soit @ =37, aiX' € F[X], Q¥ =3, a4 (XP)".

On rappelle que F,, = {3 | B racine de X? — X'}.

‘ Donc QP = Q(XP) ssi Q € F,[X] ‘




Racines d'un polynéme minimal

Soit Qs € Fp[X] un polynéme minimal de F,.
Alors Qg = H0§i<nX — 3*" oi n divise d. De plus Qs divise X" X,

Preuve. Qg(8?) = Q’ﬂ’(ﬁ) =0.

Par récurrence, ﬂ,ﬂp,ﬁpz, cee 6Pd = [ sont des racines de Q3.

Soit n le plus petit entier t.q. f?" = 5. Si 31 < i < j < n tel que Bl’i = B,
Alors 3 = BP" """ contredisant la définition de n.

Donc |{Bpi}0§i<n‘ =n et deg(Qp) > n.

Ainsi Bpk = (3 ssi k est un multiple de n. Donc n divise d.

Soit P =[Jye;cn X — B € Fy[X].

pr — H0§i<n(X _ ﬁp)p — H0§i<n XP _ ﬁpi“ = P(X?)

Donc P € F,[X]. Puisque P(B) =0, Qg divise P et aussi X?" — X.
Donc n = deg(P) < deg(Qp) < deg(P). D'otr deg(P) = deg(Qp).
Puisque P est unitaire et Qg est le polynéme minimal de P, Qg = P.



Polyndome dérivé
Soit p premier et P =37, pi X" € Fp[X]. P’ = 37, (ipi mod p) X'~
Observation. P’ =0si 3¢ k=/(pet P =3, _,pi X"
Dans ce cas, P = (ZigpiXi)p.

Soit la factorisation de P = p; [] R avec pour tout j, a; > 1.

j<m ~%j

Oéjfl Qi
Alors P' =py 3", (ay mod p)RIR [y By

J

‘ Pour tout j, a; > 1 ssi R; divise P’. ‘

Preuve.
e Pour tout k # j, R; divise le terme (o mod p)R}CRg’“_l | J R?/j’.
e Si a; > 1, R; divise le terme (a;; mod p)R;-R?rl [y R?,j/.
® Si aj =1, R; ne divise pas le terme R} [],_; R?,j'
car deg(R}) < deg(R;) et R; # 0 (daprés I'observation ci-dessus).



Factorisation de X?" — X

Soit p premier et d > 1.
Soit @ € F,[X] un polynéme premier de degré n t.q. d = kn.
Soit P € F,[X]. P mod @ € F,[Q)] vérifie PP" mod Q = P mod Q.

p(k'fl)n (k—1)n

PP mod Q = (P )" mod Q = PP mod Q =--- = P mod Q.

Soit P =X, X" — X =0 mod Q. D'ou :

Tout polynéme premier dont le degré divise d divise xr — X,

(XP" — X) = —1. D'oir :

XP" — X estle produit sans répétition
des polyndmes premiers dont le degré divise d.




Existence de polyn6mes premiers
Soit N(n) le nombre de polynémes premiers dans F,,[X] de degré n.
N ={X-B|Bel} =p

Puisque X'~ X estle produit sans répétition des polynémes premiers
dont le degré divise d. Pour tout d > 1, p? = 3=, nN(n) (1)

p*?(p?? — d/2) < dN(d) < p*
Pour tout d > 1, N(d) > 0.

Preuve.

D’aprés (1) p? > dN(d) et p? = dN(d) + Zv;jdd nN(n) < dN(d) + (d/2)p?/?.
D'ou dN(d) > p® — (d/2)p¥/? = p?/?(p/? — d/2).

Sid —2etp—2a|orsp —d/2=2-1>0.

Puisque p?/ — d/2 est croissante par rapport a p et d,

pour tout d > 1, N(d) > 0.



Test d’irréductibilité de Rabin
Un polynéme P € F,,[X] de degré n est irréductible si et seulement si :
» P divise X" — X ;
» Pour tout 1 < m < n tel que m|n, P et XP" — X sont premiers entre eux.

Preuve. Sans perte de généralité, on suppose P unitaire.

e Soit P premier.

Puisque X?" — X est le produit des polynémes premiers
dont le degré divise n, P divise X?" — X.

Puisque X?" — X est le produit des polynémes premiers
dont le degré divise m < n, P et XP" — X sont premiers entre eux.

e Soit P satisfaisant le critére de Rabin.
Puisque P divise XP" - X, P est soit :
» un polyndme premier de degré n ;
» un produit de polyndmes premiers @ t.q. deg(Q)|n A deg(Q) < n.

Puisque pour tout 1 < m < n tel que m|n,
P et XP" — X sont premiers entre eux, le deuxiéme cas est exclus.



Caractérisation des corps finis

Pour tout ¢ € N, il y a un corps d'ordre ¢ si et seulement si

q = p® pour p premier et d > 1.

Ce corps est unique a isomorphisme preés et il est isomorphe

au corps F,[Q] pour tout @ € F,[X], polyndme premier de degré d.



