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Discrete Event Stochastic Process
Intuitively

An execution of a discrete event stochastic process (DESP) is an infinite sequence
of events: e1, e2, . . . interleaved with (possibly null) delays.
(generated by some operational model)

Formally

A discrete event stochastic process is defined by two families of random variables:

I S0, S1, S2, . . . such that S0 is the initial state and Si is the state of the
system after the occurrence of ei.

I T0, T1, T2, . . . such that T0 is the time elapsed before the occurrence of e0 and
Ti is the time elapsed between the occurrences of ei and ei+1.

Hypotheses and notations
I The process diverges almost surely, i.e. Pr(

∑

i∈N
Ti = ∞) = 1.

I thus N(τ) = min({n |
∑

k≤n Tk > τ}) is defined almost everywhere and
X(τ) = SN(τ) is the observable state at time τ .

I When Pr(S0 = s) = 1, one says that the process starts in s.
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An Execution of a Process
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Analysis of DESP

Two kinds of analysis

I Transient analysis: computation of measures depending on the elapsed time
since the initial state.

I Steady-state analysis: computation of measures depending on the long-run
behaviour of the system (requires to establish its existence).

Performance indices

I A performance index is a function from states to numerical values.

I The measure of an index f w.r.t. to a state distribution π is given by:
∑

s∈S π(s) · f(s)

I When range f is {0, 1} it is an atomic property and its measure can be
rewritten:

∑

s|=f π(s)

More on performance indices in the next talk
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Discrete Time Markov Chain (DTMC)

A DTMC is a stochastic process which fulfills:
I For all n, Tn is the constant 1

I The process is memoryless

Pr(Sn+1 = sj | S0 = si0 , ..., Sn−1 = sin−1
, Sn = si)

= Pr(Sn+1 = sj | Sn = si)

≡ P[i, j]

A DTMC is defined by S0 and P
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Analysis of a DTMC: the State Status
The transient analysis is easy (and effective in the finite case) :

πn = π0 · P
n with πn the distribution of Sn

Classification of states w.r.t. the asymptotic behaviour of the DTMC
I A state is transient if the probability of a return after a visit is strictly less

than one. Hence the probability of its occurrence will go to zero. (p < 1/2)

I A state is recurrent null if the probability of a return after a visit is one but
the mean time of this return is infinite. Hence the probability of its occurrence
will go to zero. (p = 1/2)

I A state is recurrent non null if the probability of a return after a visit is one
and the mean time of this return is finite. (p > 1/2)
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State Status in finite DTMC

In a finite DTMC

I The status of a state only depends on the graph associated with the chain.

I A state is transient iff it belongs to a non terminal strongly connected
component (scc) of the graph.

I A state is recurrent non null iff it belongs to a terminal scc.
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Analysis of a DTMC: Periodicity
Irreducibility and Periodicity

I A chain is irreducible if its graph is strongly connected.

I The periodicity of an irreducible chain is the greatest integer p such that the
set of states can be partionned in p subsets S0, . . . ,Sp−1 where every
transition goes from Si to Si+1%p for some i.

How to compute the periodicity? Build a rooted tree by any traversal of the graph.
(On the fly) associate a value hi − hj + 1 to every edge (i, j) and compute the gcd
of these values.
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Analysis of a DTMC: a Particular Case

A particular case

The chain is irreducible and aperiodic (i.e. its periodicity is 1)

I π∞ exists and its value is independent from π0.

I π∞ is the unique solution of X = X · P ∧ X · 1 = 1.
where one can omit an arbitrary equation of the first system.

π1 = 0.3π1 + 0.2π2 π2 = 0.7π1 + 0.8π3 π3 = π2
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Analysis of a DTMC: the “General” Case

Almost general case: every terminal scc is aperiodic

I π∞ exists.

I π∞ =
∑

s∈S π0(s)
∑

i∈I preachi[s] · π
i
∞ where:

1. S is the set of states,

2. {Ci}i∈I is the set of terminal scc,

3. π
i

∞ is the steady-state distribution of Ci,

4. and preach
i
[s] is the probability to reach Ci starting from s.

Computation of the reachability probability for transient states
I Let T be the set of transient states

(i.e. not belonging to a terminal scc)

I Let PT,T be the submatrix of P restricted to transient states

I Let PT,i be the submatrix of P transitions from T to Ci

I Then preachi = (
∑

n∈N
(PT,T )n) · PT,i · 1 = (Id − PT,T )−1 · PT,i · 1
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Illustration: SCC and Matrices
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Continuous Time Markov Chain (CTMC)

A CTMC is a stochastic process which fulfills:
I Memoryless state change

Pr(Sn+1 = sj | S0 = si0 , ..., Sn−1 = sin−1
, T0 < τ0, ..., Tn < τn, Sn = si)

= Pr(Sn+1 = sj | Sn = si) ≡ P[i, j]

I Memoryless transition delay

Pr(Tn < τ | S0 = si0 , ..., Sn−1 = sin−1
, T0 < τ0, ..., Tn−1 < τn−1, Sn = si)

= Pr(Tn < τ | Sn = si) = 1 − e−λiτ

Notations and properties
I P defines an embedded DTMC (the chain of state changes)

I Let π(τ) the distribution de X(τ), for δ going to 0 the following assertion
holds:

π(τ + δ)(si) ≈ π(τ)(si)(1 − λiδ) +
∑

j π(τ)(sj )λjδP[j, i]

I Hence, let Q the infinitesimal generator defined by:
Q[i, j] ≡ λiP[i, j] for j 6= i and Q[i, i] ≡ −

∑

j 6=i Q[i, j]

Then: dπ
dτ

= π · Q
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CTMC: Illustration and Uniformization
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Analysis of a CTMC

Transient Analysis

I Construction of a uniform version of the CTMC (λ, P)
such that P[i, i] > 0 for all i.

I Computation by case decomposition w.r.t. the number of transitions:

π(τ) = π(0)
∑

n∈N
(e−λτ ) τn

n! P
n

Steady-state analysis

I The steady-state distribution of visits is given by the steady-state distribution
of (λ, P) (by construction, the terminal scc are aperiodic) ...

I equal to the steady-state distribution since the sojourn times follow the same
distribution.

I A particular case: P irreducible
the steady-state distribution π is the unique solution of X · Q = 0 ∧ X · 1 = 1
where one can omit an arbitrary equation of the first system.
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Markovian Renewal Process

A Markovian Renewal Process (MRP) fulfills:

I a relative memoryless property

Pr(Sn+1 = sj , Tn < τ | S0 = si0 , ..., Sn−1 = sin−1
, T0 < τ0, ..., Sn = si)

= Pr(Sn+1 = sj , Tn < τ | Sn = si) ≡ Q[i, j, τ ]

I The embedded chain is defined by: P[i, j] = limτ→∞ Q[i, j, τ ]

I The sojourn time Soj has a distribution defined by:

Pr(Soj[i] < τ) =
∑

j Q[i, j, τ ]

Analysis of a MRP
I The steady-state distribution (if there exists) π is deduced from the

steady-state distribution of the embedded chain π′ by:

π(si) = π′(si)E(Soj[i])
P

j
π′(sj)E(Soj[j])

I Transient analysis is much harder ... but the reachability probabilities only
depend on the embedded chain.
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Time and Probability in Petri Nets

How to introduce time in nets?

I Age of a token

I Firing duration of a transition

I etc.

I Firing delay of a transition with instantaneous firing
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A Token-Based Semantic
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A Duration-Based Semantic
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A Delay-Based Semantic
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A Semantic for Stochastic Petri Nets

I The initial distribution is concentrated on the the initial marking

I A distribution with outcomes in R≥0 is associated with every transition.

... but these distributions are not sufficient to define a stochastic process.

Policies for a net
One needs to define:

I The choice policy.
What is the next transition to fire?

I The service policy.
What is the influence of the enabling degree of a transition on the process?

I The memory policy.
What become the samplings of distributions that have not be used?
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Choice Policy

In the net, associate a distribution Di and a weight wi with every transition ti

Preselection w.r.t. a marking m

I Normalize weights wi of the enabled transitions s.t. w′
i ≡ wi/(

∑

m[tj〉
wj)

I Sample the distribution defined by the w′
i’s. Let ti be the selected transition

I Sample the distribution Di giving the value di.

versus

Race policy with postselection w.r.t. a marking m

I For every enabled transition ti, sample the distribution Di giving the value di.

I Let T ′ be the subset of enabled transitions with the smallest delays.
Normalize weights wi of transitions of T ′ s.t. w′

i ≡ wi/(
∑

tj∈T ′ wj)

I Sample the distribution defined by the w′
i’s. Let ti be the selected transition.

(postselection can also be handled with priorities)

Then ti is the next transition to fire with delay di.
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Choice Policy: Illustration
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Server Policy
A transition can be viewed as server for firings:

I A single server transition t allows a single instance of firings in m if m[t〉.

I An infinite server transition t allows d (the enabling degree) instances of

firings in m where d = min(
⌊

m(p)
Pre(p,t)

⌋

| p ∈ •t).

I A multiple server transition t with bound b allows min(b, d) instances of
firings in m.

This can be generalised by marking-dependent rates (see the next talk).
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Memory Policy (1)

Resampling Memory

Every sampling not used is forgotten.

This could correspond to a “crash” transition.
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Memory Policy (2)

Enabling Memory
I The samplings associated with still enabled transitions are kept and

decremented (d′
3 = d3 − d1).

I The samplings associated with disabled transitions are forgotten (like d2).

Disabling a transition could correspond to abort a service.
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Memory Policy (3)

Age Memory
I All the samplings are kept and decremented (d′

3 = d3 − d1 d′2 = d2 − d1).

I The sampling associated with a disabled transition is frozen until the
transition become again enabled (like d′

2).

Disabling a transition could correspond to suspend a service.
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Memory Policy (4)

Specification of memory policy

To be fully expressive, it should be defined w.r.t. any pair of transitions.

Interaction between memory policy and service policy

Assume enabling memory for t1 when firing t2 and infinite server policy for t1.
Which sample should be forgotten?

I The last sample performed,

I The first sample performed,

I The greatest sample, etc.

Warning: This choice may have a critical impact on the complexity of analysis.
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Nets with Exponential Distributions
Hypotheses

The distribution of every transition ti is an exponential distribution with density
function e−λiτ where the parameter λi is called the rate of the transition.

Observations

Given a marking m with transitions t1, . . . , tk serving n1, . . . , nk firings (depending
on the service policy):

I The sojourn time in m is an exponential distribution with rate
∑

i niλi.

I The probability that ti is the next transition to fire is niλi/(
∑

j njλj).

I The residual time of a delay dj − di of transition tj knowing that ti has fired
and that di is the shortest delay has for density function e−λjτ , the same as
the initial delay. Thus the memory policy is irrelevant.

I The weights are not required since equality of two samples has a null
probability (due to continuity of distributions).

The stochastic process is a CTMC whose states are markings and whose
transitions are the transitions of the reachability graph allowing standard

analysis methods.
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Generalizing Distributions for Nets

Observations
Modelling delays with exponential distributions is reasonable when:

I Only mean value information is known about distributions.

I Exponential distributions (or combination of them) are enough to approximate
the “real” distributions.

Modelling delays with exponential distributions is not reasonable when:

I The distribution of an event is known and is poorly approximable with
exponential distributions like a time-out of 10 time units.
(see phase-type SPNs in the third talk)

I The delays of the events have different magnitude orders like executing an
instruction versus performing a database request.
In this case, the 0-Dirac distribution is required.

Generalized Stochastic Petri Nets (GSPN) are nets whose timed transitions
have exponential distributions and immediate transitions have 0-Dirac dis-
tributions.
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A GSPN is a Markovian Renewal Process

Observations
I Weights are required for immediate transitions.

I The restricted reachability graph corresponds to the embedded DTMC.
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Steady-State Analysis of a GSPN
Standard method for MRP

I Build the restricted reachability graph equivalent to the embedded DTMC and
deduce the probability matrix P

I Compute π∗ the steady-state distribution of the visits of markings: π∗ = π∗P .

I Compute π the steady-state distribution of the sojourn in tangible markings:
π(m) = π∗(m)Soj(m)/

∑

m′ tangible π∗(m′)Soj(m′).

How to eliminate the vanishing markings sooner in the computation?

Alternative method for this particular case
I As before, compute the transition probability matrix P

I Compute the transition probability matrix P ′ between tangible markings.

I Compute π′∗ the (relative) steady-state distribution of the visits of tangible
markings: π′∗ = π′∗P ′.

I Compute π the steady-state distribution of the sojourn in tangible markings:
π(m) = π′∗(m)Soj(m)/

∑

m′ tangible π′∗(m′)Soj(m′).
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Steady-State Analysis: Illustration

Computation of P
′

I Let PX,Y the probability transition matrix from subset X to subset Y .
Let V (resp. T ) be the set of vanishing (resp. tangible) markings.

I P ′ = PT,T + PT,V (
∑

n∈N
P n

V,V )PV,T = PT,T + PT,V (Id − PV,V )−1PV,T

I Iterative (resp. direct) computations uses the first (resp. second) expression.
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