Alternative Analysis Methods for Stochastic Petri Nets

Serge Haddad

LSV CNRS & ENS Cachan & INRIA Saclay

Advanced Course on Petri Nets, the 16th September 2010, Rostock

- Product-form Petri Nets
- 2 Unbounded Petri Nets
- 3 Composition of Nets
- Phase-Type Petri Nets

Plan

1 Product-form Petri Nets

Unbounded Petri Nets

Composition of Nets

Phase-Type Petri Nets

<ロ><日><日><日><日><日><日><日><日><日><日><10</td>

Steady-State Analysis of a Queue

A (Markovian) queue is a CTMC

- Interarrival time: exponential distribution with parameter λ
- Service time: exponential distribution with parameter μ

Let $\rho = \frac{\lambda}{n}$ be the *utilization*

- The steady-state distribution π_{∞} exists iff ho < 1
- The probability of n clients in the queue is $\pi_\infty(n) =
 ho^n(1ho)$

Steady-State Analysis of a Queue

A (Markovian) queue is a CTMC

- Interarrival time: exponential distribution with parameter λ
- Service time: exponential distribution with parameter μ

Let $\rho = \frac{\lambda}{\mu}$ be the *utilization*

- The steady-state distribution π_{∞} exists iff $\rho < 1$
- The probability of n clients in the queue is $\pi_{\infty}(n) = \rho^n (1 \rho)$

Analysis of Two Queues in Tandem

Observation. The associated Markov chain is more complex than the one corresponding to two isolated queues. However ...

Assume $ho_1 = rac{\lambda}{\mu} < 1$ and $ho_2 = rac{\lambda}{\delta} < 1$

- The steady-state distribution π_{∞} exists.
- ► The probability of n_1 clients in queue 1 and n_2 clients in queue 2 is $\pi_{\infty}(n_1, n_2) = \rho_1^{n_1}(1 \rho_1)\rho_2^{n_2}(1 \rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

Analysis of Two Queues in Tandem

Observation. The associated Markov chain is more complex than the one corresponding to two isolated queues. However ...

Assume $ho_1 = rac{\lambda}{\mu} < 1$ and $ho_2 = rac{\lambda}{\delta} < 1$

- The steady-state distribution π_{∞} exists.
- ▶ The probability of n_1 clients in queue 1 and n_2 clients in queue 2 is $\pi_{\infty}(n_1, n_2) = \rho_1^{n_1}(1 \rho_1)\rho_2^{n_2}(1 \rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

Analysis of an Open Queuing Network

In a steady-state

- Define the (input and output) flow through queue 1 (resp. 2) as γ_1 (resp. γ_2).
- Then $\gamma_1 = \lambda + q\gamma_2$ and $\gamma_2 = p\gamma_1$. Thus $\gamma_1 = \frac{\lambda}{1-pq}$ and $\gamma_2 = \frac{p\lambda}{1-pq}$

Assume $ho_1 = rac{\gamma_1}{u} < 1$ and $ho_2 = rac{\gamma_2}{\delta} < 1$

- ► The steady-state distribution π_∞ exists.
- ▶ The probability of n_1 clients in queue 1 and n_2 clients in queue 2 is $\pi_{\infty}(n_1, n_2) = \rho_1^{n_1}(1 \rho_1)\rho_{n_2}^n(1 \rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

Analysis of an Open Queuing Network

In a steady-state

- Define the (input and output) flow through queue 1 (resp. 2) as γ_1 (resp. γ_2).
- Then $\gamma_1 = \lambda + q\gamma_2$ and $\gamma_2 = p\gamma_1$. Thus $\gamma_1 = \frac{\lambda}{1-pq}$ and $\gamma_2 = \frac{p\lambda}{1-pq}$

Assume $\rho_1 = \frac{\gamma_1}{\mu} < 1$ and $\rho_2 = \frac{\gamma_2}{\delta} < 1$

- The steady-state distribution π_{∞} exists.
- The probability of n_1 clients in queue 1 and n_2 clients in queue 2 is $\pi_{\infty}(n_1, n_2) = \rho_1^{n_1}(1 \rho_1)\rho_{n_2}^n(1 \rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

Analysis of a Closed Queuing Network

Visit ratios (up to a constant)

- Define the visit ratio flow of queue i as v_i.
- ▶ Then $v_1 = v_3 + qv_2$, $v_2 = pv_1$ and $v_3 = (1 p)v_1 + (1 q)v_2$. Thus $v_1 = 1$, $v_2 = p$ and $v_3 = 1 - pq$.

Define $\rho_1 = \frac{v_1}{u}$, $\rho_2 = \frac{v_2}{\delta}$ and $\rho_3 = \frac{v_3}{\lambda}$

- ► The steady-state probability of n_i clients in queue i is $\pi_{\infty}(n_1, n_2, n_3) = \frac{1}{G} \rho_1^{n_1} \rho_2^{n_2} \rho_3^{n_3}$ (with $n_1 + n_2 + n_3 = n$)
- where G the normalizing constant can be efficiently computed by dynamic programming.

Analysis of a Closed Queuing Network

Visit ratios (up to a constant)

Define the visit ratio flow of queue i as v_i.

Then
$$v_1 = v_3 + qv_2$$
, $v_2 = pv_1$ and $v_3 = (1-p)v_1 + (1-q)v_2$.
Thus $v_1 = 1$, $v_2 = p$ and $v_3 = 1 - pq$.

Define $ho_1 = rac{v_1}{\mu}$, $ho_2 = rac{v_2}{\delta}$ and $ho_3 = rac{v_3}{\lambda}$

- ► The steady-state probability of n_i clients in queue i is $\pi_{\infty}(n_1, n_2, n_3) = \frac{1}{G} \rho_1^{n_1} \rho_2^{n_2} \rho_3^{n_3}$ (with $n_1 + n_2 + n_3 = n$)
- where G the normalizing constant can be efficiently computed by dynamic programming.

Queuing Networks and Petri Nets

Observations

- A (single client class) queuing network can easily be represented by a Petri net.
- Such a Petri net is a state machine: every transition has at most a single input and a single output place.

Can we define a more general subclass of Petri nets with a product form for the steady-state distribution?

Product Form Stochastic Petri Nets (PFSPN)

Principles

- Transitions can be partionned into subsets corresponding to several classes of clients with their specific activities
- Places model resources shared between the clients.
- Client states are implicitely represented.

Bags and Transitions in PFSPN

The resource graph

- The vertices are the input and the ouput bags of the transitions.
- Every transition of the net t yields a graph transition $t \xrightarrow{t} t^{\bullet}$
- Client classes correspond to the connected components of the graph.

First requirement: The connected components of the graph must be strongly connected.

Witnesses in **PFSPN**

Vector $-p_2-p_3$ is a witness for bag p_1+p_4 : $(-p_2-p_3) \cdot W(t_3) = 1$ $(-p_2-p_3) \cdot W(t_1) = -1$ $(-p_2-p_3) \cdot W(t) = 0$ for every other t

Witness for a bag b

- Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.
- Let v be a place vector, v is a witness for b if:
 - $\forall t \in In(b) \ v \cdot W(t) = -1$ (where W(t) is the incidence of t)

$$\forall t \in Out(b) \ v \cdot W(t) = 1$$

 $\blacktriangleright \ \forall t \notin In(b) \cup Out(b) \ v \cdot W(t) = 0$

Second requirement: Every bag must have a witness.

Steady-State Distributions of PFSPN

The reachability space:

 $m(p_1) + m(p_2) + m(p_3) = 2$

 $m(p_4) + m(p_5) + m(p_6) = m(p_1) + 1$

Steady-state distribution

- Assume the requirements are fulfilled, with w(b) the witness for bag b.
- Compute the ratio visit of bags v(b) on the resource graph.
- ► The output rate of a bag b is $\mu(b) = \sum_{t|\bullet t=b} \mu(t)$ with $\mu(t)$ the rate of t.

• Then:
$$\pi_{\infty}(m) = \frac{1}{G} \prod_{b} \left(\frac{v(b)}{\mu(b)} \right)^{w(b)}$$

Observation. The normalizing constant can be efficiently computed if the reachability space is characterized by linear place invariants.

Some References

W. Henderson, C.E.M. Pearce, P.G. Taylor and N.M. van Dijk

Closed queueing networks with batch services. Queueing Systems, 6:59-70, 1990.

J.L. Coleman, W. Henderson, P.G. Taylor

Product form equilibrium distributions and a convolution algorithm for stochastic Petri nets Performance Evaluation 26 (3) 159-180, 1996.

S. Haddad, P. Moreaux, M. Sereno, M. Silva

Product-form and stochastic Petri nets: a structural approach. Performance Evaluation, 59: 313-336, 2005.

J. Mairesse, H-T. Nguyen

Deficiency Zero Petri Nets and Product Form. Petri Nets 2009: LNCS 5606 pp. 103-122, 2009

Plan

Product-form Petri Nets

2 Unbounded Petri Nets

Composition of Nets

Phase-Type Petri Nets

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ⊇ の Q ○ 13/37

An Unbounded Petri Net

The steady-state distribution: $x_i = \left(\frac{\lambda}{\mu}\right)^{i} \left(1 - \frac{\lambda}{\mu}\right)$

- Let x_i be the steady-state probability of i tokens in the place
- The steady-state equations are:

1.
$$x_0\lambda - x_1\mu = 0$$

2. $\forall i \ge 1 \ x_{i-1}\lambda - x_i(\lambda + \mu) + x_{i+1}\mu = 0$
3. $\sum_{i \in \mathbb{N}} x_i = 1$

Proof: Just check the equations! ... or use a simple trick.

An Alternative Steady-State Analysis

Assume there exists ρ such that:

 $\blacktriangleright \quad \forall i \ge 1 \ x_i \ge x_{i-1}\rho$

$$\blacktriangleright \ \lambda - \rho(\lambda + \mu) + \rho^2 \mu = 0$$

Define $y_0 \equiv x_0$ and for all $i y_{i+1} \equiv y_i \rho$.

Then:

- $\forall i \ y_i \leq x_i$ and thus $sy \equiv \sum_i y_i \leq 1$
- $\forall i \ge 1 \ y_{i-1}\lambda y_i(\lambda + \mu) + y_{i+1}\mu = 0$

Normalize y: for all $i \ z_i \equiv \frac{y_i}{su}$

Then z fulfills the steady-state equations (except possibly the first one). So for all $i z_i = x_i$ (and in fact y = z = x).

Such a ρ exists : $\rho \equiv \frac{\lambda}{\mu}$

An Alternative Steady-State Analysis

Assume there exists ρ such that:

 $\blacktriangleright \quad \forall i \ge 1 \ x_i \ge x_{i-1}\rho$

$$\blacktriangleright \ \lambda - \rho(\lambda + \mu) + \rho^2 \mu = 0$$

Define $y_0 \equiv x_0$ and for all $i y_{i+1} \equiv y_i \rho$.

Then:

•
$$\forall i \ y_i \leq x_i \text{ and thus } sy \equiv \sum_i y_i \leq 1$$

$$\forall i \ge 1 \ y_{i-1}\lambda - y_i(\lambda + \mu) + y_{i+1}\mu = 0$$

Normalize y: for all $i \ z_i \equiv \frac{y_i}{su}$

Then z fulfills the steady-state equations (except possibly the first one). So for all $i z_i = x_i$ (and in fact y = z = x).

Such a ρ exists : $\rho \equiv \frac{\lambda}{\mu}$

An Alternative Steady-State Analysis

Assume there exists ρ such that:

 $\blacktriangleright \quad \forall i \ge 1 \ x_i \ge x_{i-1}\rho$

$$\blacktriangleright \ \lambda - \rho(\lambda + \mu) + \rho^2 \mu = 0$$

Define $y_0 \equiv x_0$ and for all $i y_{i+1} \equiv y_i \rho$.

Then:

•
$$\forall i \ y_i \leq x_i \text{ and thus } sy \equiv \sum_i y_i \leq 1$$

$$\forall i \ge 1 \ y_{i-1}\lambda - y_i(\lambda + \mu) + y_{i+1}\mu = 0$$

Normalize y: for all $i \ \overline{z_i \equiv \frac{y_i}{sy}}$

Then z fulfills the steady-state equations (except possibly the first one). So for all $i z_i = x_i$ (and in fact y = z = x).

Such a
$$\rho$$
 exists : $\rho \equiv \frac{\lambda}{\mu}$

Another Unbounded Petri Net

The steady-state distribution

Let X_i be the steady-state probability vector of markings with i tokens in p_1 . The steady-state equations are:

- $\blacktriangleright X_0 \cdot B + X_1 \cdot A_2 = 0$
- $\flat \quad \forall i \ X_i \cdot A_0 + X_{i+1} \cdot A_1 + X_{i+2} \cdot A_2 = 0$
- $\blacktriangleright \sum_{i \in \mathbb{N}} ||X_i|| = 1$

Another Unbounded Petri Net

The steady-state distribution

Let X_i be the steady-state probability vector of markings with i tokens in p_1 . The steady-state equations are:

- $\bullet \ X_0 \cdot B + X_1 \cdot A_2 = 0$
- $\forall i \ X_i \cdot A_0 + X_{i+1} \cdot A_1 + X_{i+2} \cdot A_2 = 0$
- $\sum_{i\in\mathbb{N}}||X_i||=1$

Nets with a Single Unbounded Place (1)

Let $\mathcal N$ be a net with a single unbounded place p

- Assume (for simplicity) that arcs around p are weighted by 1.
- The previous equation scheme holds for the steady-state distribution.

Let us try to mimic the previous analysis. Assume there exists a non negative matrix R such that: $\forall i \ge 1 \ X_{i+1} \ge X_i \cdot R$ and $A_0 + R \cdot A_1 + R^2 \cdot A_2 = 0$

Define Y by:

- 1. Solving $Y_0 \cdot B + Y_1 \cdot A_2 = 0 \wedge Y_0 \cdot A_0 + Y_1 \cdot (A_1 + R \cdot A_2) = 0$ omitting an arbitrary equation (up to a constant)
- 2. Inductively let for all $i \ge 1$ $Y_{i+1} \equiv Y_i \cdot R$

Then Y fulfils all the equations (except possibly one)

 $\forall i \ge 1 \ Y_i \cdot A_0 + Y_{i+1} \cdot A_1 + Y_{i+2} \cdot A_2 = Y_i \cdot (A_0 + R \cdot A_1 + R^2 \cdot A_2) = 0$

... but it is not a distribution.

Nets with a Single Unbounded Place (1)

Let $\mathcal N$ be a net with a single unbounded place p

- Assume (for simplicity) that arcs around p are weighted by 1.
- The previous equation scheme holds for the steady-state distribution.

Let us try to mimic the previous analysis. Assume there exists a non negative matrix R such that: $\forall i \ge 1 \ X_{i+1} \ge X_i \cdot R$ and $A_0 + R \cdot A_1 + R^2 \cdot A_2 = 0$

Define Y by:

- 1. Solving $Y_0 \cdot B + Y_1 \cdot A_2 = 0 \wedge Y_0 \cdot A_0 + Y_1 \cdot (A_1 + R \cdot A_2) = 0$ omitting an arbitrary equation *(up to a constant)*
- 2. Inductively let for all $i \ge 1$ $Y_{i+1} \equiv Y_i \cdot R$

Then Y fulfils all the equations (except possibly one)

 $\forall i \ge 1 \ Y_i \cdot A_0 + Y_{i+1} \cdot A_1 + Y_{i+2} \cdot A_2 = Y_i \cdot (A_0 + R \cdot A_1 + R^2 \cdot A_2) = 0$

... but it is not a distribution.

Nets with a Single Unbounded Place (1)

Let $\mathcal N$ be a net with a single unbounded place p

- ▶ Assume (for simplicity) that arcs around *p* are weighted by 1.
- The previous equation scheme holds for the steady-state distribution.

Let us try to mimic the previous analysis. Assume there exists a non negative matrix R such that: $\forall i \ge 1 \ X_{i+1} \ge X_i \cdot R$ and $A_0 + R \cdot A_1 + R^2 \cdot A_2 = 0$

Define Y by:

- 1. Solving $Y_0 \cdot B + Y_1 \cdot A_2 = 0 \wedge Y_0 \cdot A_0 + Y_1 \cdot (A_1 + R \cdot A_2) = 0$ omitting an arbitrary equation *(up to a constant)*
- 2. Inductively let for all $i \ge 1$ $Y_{i+1} \equiv Y_i \cdot R$

Then Y fulfils all the equations (except possibly one)

 $\forall i \ge 1 \ Y_i \cdot A_0 + Y_{i+1} \cdot A_1 + Y_{i+2} \cdot A_2 = Y_i \cdot (A_0 + R \cdot A_1 + R^2 \cdot A_2) = 0$

... but it is not a distribution.

Nets with a Single Unbounded Place (2)

However Y can be normalized:

 $X_1 \cdot \left(\sum_{i \in N} R^i\right) \leq \sum_{i \geq 1} X_i$ thus $\sum_{i \in N} R^i$ is finite implying the finiteness of $sy \equiv \sum_i ||Y_i||$.

Normalize Y: for all $i, Z_i \equiv \frac{Y_i}{su}$

Then Z fulfills the steady-state equations. So for all i, $Z_i = X_i$.

How to find R?

◆□▶◆□▶◆≧▶◆≧▶ ≧ ∽��? 18/37

Nets with a Single Unbounded Place (2)

However Y can be normalized:

 $X_1 \cdot \left(\sum_{i \in N} R^i\right) \leq \sum_{i \geq 1} X_i$ thus $\sum_{i \in N} R^i$ is finite implying the finiteness of $sy \equiv \sum_i ||Y_i||$.

Normalize Y: for all $i, Z_i \equiv \frac{Y_i}{sy}$

Then Z fulfills the steady-state equations. So for all $i, Z_i = X_i$.

How to find R?

◆□▶◆□▶◆≧▶◆≧▶ ≧ ∽��♡ 18/37

Nets with a Single Unbounded Place (2)

However Y can be normalized:

 $X_1 \cdot \left(\sum_{i \in N} R^i\right) \leq \sum_{i \geq 1} X_i$ thus $\sum_{i \in N} R^i$ is finite implying the finiteness of $sy \equiv \sum_i ||Y_i||$.

Normalize Y: for all $i, Z_i \equiv \frac{Y_i}{sy}$

Then Z fulfills the steady-state equations. So for all $i, Z_i = X_i$.

How to find R?

◆□▶◆□▶◆≧▶◆≧▶ ≧ ∽��♡ 18/37

Looking for *R*: a fixed point approach

Observation. A_1 is invertible and $-A_1^{-1}$ is non negative.

Define $R_0 \equiv 0$ and $\forall n \ R_{n+1} \equiv -(A_0 + R_n^2 \cdot A_2)A_1^{-1}$.

Then by induction:

- R_n is a increasing sequence of non negative matrices
- $\forall i \ge 1 \ X_{i+1} \ge X_i \cdot R_n.$

Thus the sequence R_n is bounded and so convergent.

Let $R \equiv \lim_{n \to \infty} R_n$.

Then:
$$\forall i \ge 2 \ X_i \ge X_{i-1} \cdot R$$
 and $R = -(A_0 + R^2 \cdot A_2)A_1^{-1}$

Once R is computed, it remains to solve the following system: • $X_0 \cdot B + X_1 \cdot A_2 = 0, X_0 \cdot A_0 + X_1 \cdot (A_1 + R \cdot A_2) = 0$ • $\sum_i X_i \cdot 1 = 1$ equivalent to $||X_0|| + (X_1 \cdot \sum_{n \in \mathbb{N}} R^n) \mathbf{1} = 1$ equivalent to $||X_0|| + ||X_1 \cdot (Id - R)^{-1}|| = 1$

Looking for *R*: a fixed point approach

Observation. A_1 is invertible and $-A_1^{-1}$ is non negative.

Define $R_0 \equiv 0$ and $\forall n \ R_{n+1} \equiv -(A_0 + R_n^2 \cdot A_2)A_1^{-1}$.

Then by induction:

- R_n is a increasing sequence of non negative matrices
- $\forall i \ge 1 \ X_{i+1} \ge X_i \cdot R_n.$

Thus the sequence R_n is bounded and so convergent.

Let $R \equiv \lim_{n \to \infty} R_n$.

Then:
$$\forall i \ge 2 \ X_i \ge X_{i-1} \cdot R$$
 and $R = -(A_0 + R^2 \cdot A_2)A_1^{-1}$

Once R is computed, it remains to solve the following system: $X_0 \cdot B + X_1 \cdot A_2 = 0, X_0 \cdot A_0 + X_1 \cdot (A_1 + R \cdot A_2) = 0$ $\sum_i X_i \cdot \mathbf{1} = 1 \text{ equivalent to}$ $||X_0|| + (X_1 \cdot \sum_{n \in \mathbb{N}} R^n) \mathbf{1} = 1 \text{ equivalent to}$ $||X_0|| + ||X_1 \cdot (Id - R)^{-1}|| = 1$

Looking for *R*: a fixed point approach

Observation. A_1 is invertible and $-A_1^{-1}$ is non negative.

Define $R_0 \equiv 0$ and $\forall n \ R_{n+1} \equiv -(A_0 + R_n^2 \cdot A_2)A_1^{-1}$.

Then by induction:

- R_n is a increasing sequence of non negative matrices
- $\forall i \ge 1 \ X_{i+1} \ge X_i \cdot R_n.$

Thus the sequence R_n is bounded and so convergent.

Let $R \equiv \lim_{n \to \infty} R_n$.

Then:
$$\forall i \ge 2 \ X_i \ge X_{i-1} \cdot R$$
 and $R = -(A_0 + R^2 \cdot A_2)A_1^{-1}$

Once R is computed, it remains to solve the following system: $X_0 \cdot B + X_1 \cdot A_2 = 0, X_0 \cdot A_0 + X_1 \cdot (A_1 + R \cdot A_2) = 0$ $\sum_i X_i \cdot \mathbf{1} = 1 \text{ equivalent to}$ $||X_0|| + (X_1 \cdot \sum_{n \in \mathbb{N}} R^n) \mathbf{1} = 1 \text{ equivalent to}$ $||X_0|| + ||X_1 \cdot (Id - R)^{-1}|| = 1$

Some References

M. F. Neuts

Matrix-geometric solutions in stochastic models - an algorithmic approach The John Hopkins University Press, London, 1981

B.R. Haverkort

Approximate performability and dependability modelling using generalized stochastic Petri nets. Performance Evaluation, 18(1):61-78, 1993

B.R. Haverkort

Matrix-geometric solution of infinite stochastic Petri nets. International Performance and Dependability Symposium, p. 72-81, IEEE Computer Society Press, 1995

B.R. Haverkort

Performance of Computer Communication Systems. John Wiley & Sons, 1998

Plan

Product-form Petri Nets

Unbounded Petri Nets

3 Composition of Nets

Phase-Type Petri Nets

A Composition of Two Nets

The infinitesimal generator Q

$$\begin{pmatrix} -(\gamma+\lambda) & \gamma & \lambda & 0\\ \gamma' & -(\gamma'+\lambda) & 0 & \lambda\\ \lambda' & 0 & -(\gamma+\lambda') & \gamma\\ \mu & \lambda' & \gamma' & -(\gamma'+\lambda'+\mu) \end{pmatrix}$$

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへで 22/37

Decomposition of the Generator

Decomposition w.r.t. the activities inside the net

- A matrix for the local activity of every component Q_i (here two components)
- ► A matrix for every synchronised transition B_t with coefficients in {-1,0,1} (here a single transition)

How to exploit the regularity of these matrices?

Decomposition of the Generator

Decomposition w.r.t. the activities inside the net

- A matrix for the local activity of every component Q_i (here two components)
- ► A matrix for every synchronised transition B_t with coefficients in {-1,0,1} (here a single transition)

How to exploit the regularity of these matrices?

A Key Operation: the Tensorial Product (1)

 Q_1 , the matrix associated with the first component fulfils:

 $Q_1 = Ql_1 \otimes Id$

- ▶ where Ql_1 is the generator of the local Markov chain of the first component;
- where Id the identity matrix witnesses the independence from the second component.

A Key Operation: the Tensorial Product (2)

Q_2 , the matrix associated with the first component fulfils:

 $Q_2 = Id \otimes Ql_2$

- ▶ where Ql₂ is the generator of the local Markov chain of the second component;
- where Id the identity matrix witnesses the independence from the first component.

A Key Operation: the Tensorial Product (3)

 B_t , the matrix associated with the synchronized transition fulfils:

$$B_t = B_{t,1} \otimes B_{t,2} - \mathbf{D}(B_{t,1} \otimes B_{t,2})$$

- ▶ where B_{t,i} is the indicator of local state change due to t in the ith component;
- where D is the matrix operator summing the items of a line in the diagonal item.

Steady-State Analysis via Tensorial Decomposition

Iterative computation of the steady-state distribution

- Select any initial distribution π_0 .
- ► Iterate $\pi_{n+1} = \pi_n (Id + \frac{1}{c} \cdot Q)$ with c any value greater than $\max_i(|Q[i,i]|)$
- Stop when the successive values are enough close

Observation

The iterative approach is based on the product of a vector by a matrix.

When $C = A \otimes B$ computing $v \cdot C$ can be done:

- without computing C thus saving space;
- and more efficiently thus saving time.

Steady-State Analysis via Tensorial Decomposition

Iterative computation of the steady-state distribution

- Select any initial distribution π_0 .
- ► Iterate $\pi_{n+1} = \pi_n (Id + \frac{1}{c} \cdot Q)$ with c any value greater than $\max_i(|Q[i,i]|)$
- Stop when the successive values are enough close

Observation

The iterative approach is based on the product of a vector by a matrix.

When $C = A \otimes B$ computing $v \cdot C$ can be done:

- without computing C thus saving space;
- and more efficiently thus saving time.

Steady-State Analysis via Tensorial Decomposition

Iterative computation of the steady-state distribution

- Select any initial distribution π_0 .
- ► Iterate $\pi_{n+1} = \pi_n (Id + \frac{1}{c} \cdot Q)$ with c any value greater than $\max_i(|Q[i,i]|)$
- Stop when the successive values are enough close

Observation

The iterative approach is based on the product of a vector by a matrix.

When $C = A \otimes B$ computing $v \cdot C$ can be done:

- without computing C thus saving space;
- and more efficiently thus saving time.

The Vector-Matrix Multiplication

$$\begin{pmatrix} x_{11} & x_{12} & x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{11} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{11} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}$$

$$= \begin{pmatrix} (x_{11}a_{11} + x_{21}a_{21})b_{11} + (x_{12}a_{11} + x_{22}a_{21})b_{21} \\ (x_{11}a_{11} + x_{21}a_{21})b_{12} + (x_{12}a_{11} + x_{22}a_{21})b_{22} \\ (x_{11}a_{12} + x_{21}a_{22})b_{11} + (x_{12}a_{12} + x_{22}a_{22})b_{21} \\ (x_{11}a_{12} + x_{21}a_{22})b_{12} + (x_{12}a_{12} + x_{22}a_{22})b_{22} \end{pmatrix}$$

$$= \begin{pmatrix} z_{11}b_{11} + z_{12}b_{21} \\ z_{11}b_{12} + z_{12}b_{22} \\ z_{21}b_{11} + z_{22}b_{21} \\ z_{21}b_{12} + z_{22}b_{22} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} z_{11} \\ z_{12} \end{pmatrix} \cdot B \\ \begin{pmatrix} z_{21} \\ z_{22} \end{pmatrix} \cdot B \end{pmatrix}$$

where $\begin{pmatrix} z_{11} & z_{21} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{21} \end{pmatrix} \cdot A$ and $\begin{pmatrix} z_{12} & z_{22} \end{pmatrix} = \begin{pmatrix} x_{12} & x_{22} \end{pmatrix} \cdot A$

Some References

B. Plateau

On the stochastic structure of parallelism and synchronization models for distributed algorithms 1985 ACM SIGMETRICS pp. 147-154

S. Donatelli

Superposed Generalized Stochastic Petri Nets: definition and efficient Solution 15th International Conference on Application and Theory of Petri Nets LNCS 815, pp 258-277, 1994

P. Buchholz, G. Ciardo, S. Donatelli, P. Kemper

Complexity of Kronecker Operations on Sparse Matrices with Applications to Solution of Markov Models INFORMS Journal on Computing pp. 203-222 Vol. 12-3, 2000

Plan

Product-form Petri Nets

Unbounded Petri Nets

Composition of Nets

Phase-Type Distribution

A phase-type distribution is defined by:

- A continuous-time Markov chain with a single terminal scc consisting in an absorbing state.
- > The associated distribution is the time to reach the absorbing state.

Interest of phase-type distributions

- Any distribution can be approximated as close as possible by a phase-type distribution.
- Warning: in some cases the number of states to obtain a "good" approximation can be prohibitive.

Approximating a Dirac Distribution

A random variable X with d-Dirac distribution is defined by $\mathbf{Pr}(X = d) = 1$

Erlang distributions

- ► A sequence of *n* non absorbing states with output rate *n/d* ending in the absorbing state.
- The mean value of the absorbing time is d.
- The variance of the absorbing time is $\frac{d^2}{n}$; so it goes to 0 when n goes to ∞ . (the coefficient of variation is $\frac{1}{\sqrt{n}}$)

$$1 \xrightarrow{n/d} 2 \xrightarrow{n/d} \cdots \xrightarrow{n/d} n \xrightarrow{n/d} n^{n/d}$$

Erlang distributions are the appropriate approximations of Dirac distributions

Increasing the coefficient of variation

Let d be the mean of some distribution with a great coefficient of variation.

Hyperexponential distributions

- A probabilistic choice between exponential distributions with different rates.
- The mean value of the absorbing time is the weighted average of mean values of these distributions.
- The coefficient of variation is always greater than 1.

For instance, the given distribution can be approximated by a three-state hyperexponential distribution (with two parameters p, n).

A Net with a Phase-Type Distribution

A net with phase-type distributions

- Its stochastic process is still a Markov chain.
- whose transitions are either external transitions modifying the current marking
- or internal transitions updating the stage of a phase-type distribution.

How to exploit the regularity of the chain?

A Net with a Phase-Type Distribution

A net with phase-type distributions

- Its stochastic process is still a Markov chain.
- whose transitions are either external transitions modifying the current marking
- or internal transitions updating the stage of a phase-type distribution.

How to exploit the regularity of the chain?

Partition of the State Space

Partition the markings

- Markings with same enabled phase-type transitions are grouped.
- Let \mathcal{M} be such a class of markings with t_1, \ldots, t_d these enabled transitions.
- ► Then the corresponding states say S_M in the Markov chain are (m, q₁,...,q_d) with m ∈ M and q_i being a non absorbing state of the distribution of t_i.

Structure of the generator between two classes $\mathcal{S}_{\mathcal{M}}$ and $\mathcal{S}_{\mathcal{M}'}$

- Consider the block of Q indexed by $S_{\mathcal{M}} \times S_{\mathcal{M}'}$.
- Then a tensorial expression of this block can be obtained where the involved matrices depends either on:
 - 1. either on the change of marking by exponential transitions or phase-type transitions when reaching absorbing states *(external transitions)*
 - 2. or on phase-type transitions that do no reach absorbing state (*internal transitions*).

Partition of the State Space

Partition the markings

- Markings with same enabled phase-type transitions are grouped.
- Let \mathcal{M} be such a class of markings with t_1, \ldots, t_d these enabled transitions.
- ► Then the corresponding states say S_M in the Markov chain are (m, q₁,...,q_d) with m ∈ M and q_i being a non absorbing state of the distribution of t_i.

Structure of the generator between two classes $\mathcal{S}_{\mathcal{M}}$ and $\mathcal{S}_{\mathcal{M}'}$

- Consider the block of Q indexed by $S_{\mathcal{M}} \times S_{\mathcal{M}'}$.
- Then a tensorial expression of this block can be obtained where the involved matrices depends either on:
 - 1. either on the change of marking by exponential transitions or phase-type transitions when reaching absorbing states *(external transitions)*
 - 2. or on phase-type transitions that do no reach absorbing state (internal transitions).

Example of Block Tensorial Expression

$$Q' = E \otimes Id + Id \otimes L + \mu(F \otimes G - \mathbf{D}(F \otimes G))$$

where E corresponds to the firing of the exponential transition, L corresponds to the internal change of the distribution

 $E = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots & 0 \\ 0 & -\lambda & \lambda & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & -\lambda & \lambda \\ 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix} L = \begin{pmatrix} -\mu & \mu & 0 & 0 & \dots & 0 \\ 0 & -\mu & \mu & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & -\mu & \mu \\ 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix}$ and F, G correspond to the firing of the phase-type transition $F = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & 0 & 0 \\ 0 & \dots & 0 & 0 & 1 & 0 \end{pmatrix} G = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \dots & 0 & 0 & 0 & 0 \\ 1 & \dots & 0 & 0 & 0 & 0 \end{pmatrix}$ ▲ 重 ▶ ▲ 重 ▶ 重 ♥ Q (♥ 36/37)

Some References

A. Cumani

ESP - a package for the evaluation of stochastic Petri nets with phase-type distributed transition times International Workshop on Timed Petri Nets pages 144-151 IEEE Computer Society Press 1985

P. Chen, S. C. Bruell, G. Balbo

Alternative methods for incorporating non exponential distributions into stochastic timed Petri nets Third International Workshop on Petri Nets and Performance Models. IEEE Computer Society Press pp. 187-197, 1989

S. Haddad, P. Moreaux, G. Chiola

Efficient handling of phase-type distributions in generalized stochastic Petri nets 18th International Conference on Application and Theory of Petri Nets LNCS 1248 pp. 175-194,1997

S. Donatelli, S. Haddad, P. Moreaux

Structured characterization of the Markov chains of phase-type SPN 10th International Conference on Computer Performance Evaluation. Modelling Techniques and Tools LNCS 1469 pp. 243-254, 1998