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Steady-State Analysis of a Queue

A (Markovian) queue is a CTMC
I Interarrival time: exponential distribution with parameter λ

I Service time: exponential distribution with parameter µ

Let ρ = λ
µ

be the utilization

I The steady-state distribution π∞ exists iff ρ < 1

I The probability of n clients in the queue is π∞(n) = ρn(1 − ρ)
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Analysis of Two Queues in Tandem

Observation. The associated Markov chain is more complex than the one
corresponding to two isolated queues. However ...

Assume ρ1 = λ
µ

< 1 and ρ2 = λ
δ

< 1

I The steady-state distribution π∞ exists.

I The probability of n1 clients in queue 1 and n2 clients in queue 2 is
π∞(n1, n2) = ρn1

1 (1 − ρ1)ρ
n2

2 (1 − ρ2)

I It is the product of the steady-state distributions corresponding to two
isolated queues.
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Analysis of an Open Queuing Network

In a steady-state
I Define the (input and output) flow through queue 1 (resp. 2) as γ1 (resp. γ2).

I Then γ1 = λ + qγ2 and γ2 = pγ1. Thus γ1 = λ
1−pq

and γ2 = pλ
1−pq

Assume ρ1 = γ1

µ
< 1 and ρ2 = γ2

δ
< 1

I The steady-state distribution π∞ exists.

I The probability of n1 clients in queue 1 and n2 clients in queue 2 is
π∞(n1, n2) = ρn1

1 (1 − ρ1)ρ
n
n2
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Analysis of a Closed Queuing Network

Visit ratios (up to a constant)
I Define the visit ratio flow of queue i as vi.

I Then v1 = v3 + qv2, v2 = pv1 and v3 = (1 − p)v1 + (1 − q)v2.
Thus v1 = 1, v2 = p and v3 = 1 − pq.

Define ρ1 = v1

µ
, ρ2 = v2

δ
and ρ3 = v3

λ

I The steady-state probability of ni clients in queue i is
π∞(n1, n2, n3) = 1

G
ρn1

1 ρn2

2 ρn3

3 (with n1 + n2 + n3 = n)

I where G the normalizing constant can be efficiently computed by dynamic
programming.



6/37

Analysis of a Closed Queuing Network

Visit ratios (up to a constant)
I Define the visit ratio flow of queue i as vi.

I Then v1 = v3 + qv2, v2 = pv1 and v3 = (1 − p)v1 + (1 − q)v2.
Thus v1 = 1, v2 = p and v3 = 1 − pq.

Define ρ1 = v1

µ
, ρ2 = v2

δ
and ρ3 = v3

λ

I The steady-state probability of ni clients in queue i is
π∞(n1, n2, n3) = 1

G
ρn1

1 ρn2

2 ρn3

3 (with n1 + n2 + n3 = n)

I where G the normalizing constant can be efficiently computed by dynamic
programming.



7/37

Queuing Networks and Petri Nets

Observations

I A (single client class) queuing network can easily be represented by a Petri
net.

I Such a Petri net is a state machine: every transition has at most a single
input and a single output place.

Can we define a more general subclass of Petri nets with a product form
for the steady-state distribution?
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Product Form Stochastic Petri Nets

(PFSPN)

Principles

I Transitions can be partionned into subsets corresponding to several classes of
clients with their specific activities

I Places model resources shared between the clients.

I Client states are implicitely represented.
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Bags and Transitions in PFSPN

The resource graph

I The vertices are the input and the ouput bags of the transitions.

I Every transition of the net t yields a graph transition •t
t
−→ t•

I Client classes correspond to the connected components of the graph.

First requirement: The connected components of the graph must be
strongly connected.



10/37

Witnesses in PFSPN

Witness for a bag b

I Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.

I Let v be a place vector, v is a witness for b if:
I ∀t ∈ In(b) v · W (t) = −1 (where W (t) is the incidence of t)
I ∀t ∈ Out(b) v · W (t) = 1
I ∀t /∈ In(b) ∪ Out(b) v · W (t) = 0

Second requirement: Every bag must have a witness.
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Steady-State Distributions of PFSPN

Steady-state distribution
I Assume the requirements are fulfilled, with w(b) the witness for bag b.

I Compute the ratio visit of bags v(b) on the resource graph.

I The output rate of a bag b is µ(b) =
∑

t|•t=b µ(t) with µ(t) the rate of t.

I Then: π∞(m) = 1
G

∏

b

(

v(b)
µ(b)

)w(b)·m

Observation. The normalizing constant can be efficiently computed if the
reachability space is characterized by linear place invariants.
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An Unbounded Petri Net

The steady-state distribution: xi =
(

λ
µ

)i

(1 − λ
µ
)

I Let xi be the steady-state probability of i tokens in the place

I The steady-state equations are:

1. x0λ − x1µ = 0
2. ∀i ≥ 1 xi−1λ − xi(λ + µ) + xi+1µ = 0
3.

P

i∈N
xi = 1

Proof: Just check the equations! ... or use a simple trick.
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An Alternative Steady-State Analysis
Assume there exists ρ such that:

I ∀i ≥ 1 xi ≥ xi−1ρ

I λ − ρ(λ + µ) + ρ2µ = 0

Define y0 ≡ x0 and for all i yi+1 ≡ yiρ.

Then:

I ∀i yi ≤ xi and thus sy ≡
∑

i yi ≤ 1

I ∀i ≥ 1 yi−1λ − yi(λ + µ) + yi+1µ = 0

Normalize y: for all i zi ≡
yi

sy

Then z fulfills the steady-state equations (except possibly the first one). So for all
i zi = xi (and in fact y = z = x).

Such a ρ exists : ρ ≡ λ
µ
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Another Unbounded Petri Net

The steady-state distribution

Let Xi be the steady-state probability vector of markings with i tokens in p1.
The steady-state equations are:

I X0 · B + X1 · A2 = 0

I ∀i Xi · A0 + Xi+1 · A1 + Xi+2 · A2 = 0

I

∑

i∈N
||Xi|| = 1
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Nets with a Single Unbounded Place (1)
Let N be a net with a single unbounded place p

I Assume (for simplicity) that arcs around p are weighted by 1.

I The previous equation scheme holds for the steady-state distribution.

Let us try to mimic the previous analysis.
Assume there exists a non negative matrix R such that:
∀i ≥ 1 Xi+1 ≥ Xi · R and A0 + R · A1 + R2 · A2 = 0

Define Y by:

1. Solving Y0 · B + Y1 · A2 = 0 ∧ Y0 · A0 + Y1 · (A1 + R · A2) = 0
omitting an arbitrary equation (up to a constant)

2. Inductively let for all i ≥ 1 Yi+1 ≡ Yi · R

Then Y fulfils all the equations (except possibly one)

∀i ≥ 1 Yi · A0 + Yi+1 · A1 + Yi+2 · A2 = Yi · (A0 + R · A1 + R2 · A2) = 0

... but it is not a distribution.
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Nets with a Single Unbounded Place (2)

However Y can be normalized:

X1 ·
(
∑

i∈N Ri
)

≤
∑

i≥1 Xi thus
∑

i∈N Ri is finite
implying the finiteness of sy ≡

∑

i ||Yi||.

Normalize Y : for all i, Zi ≡
Yi

sy

Then Z fulfills the steady-state equations. So for all i, Zi = Xi.

How to find R?
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Looking for R: a fixed point approach
Observation. A1 is invertible and −A−1

1 is non negative.

Define R0 ≡ 0 and ∀n Rn+1 ≡ −(A0 + R2
n · A2)A

−1

1 .

Then by induction:

I Rn is a increasing sequence of non negative matrices

I ∀i ≥ 1 Xi+1 ≥ Xi · Rn.

Thus the sequence Rn is bounded and so convergent.

Let R ≡ limn→∞ Rn.

Then: ∀i ≥ 2 Xi ≥ Xi−1 · R and R = −(A0 + R2 · A2)A
−1
1

Once R is computed, it remains to solve the following system:
I X0 · B + X1 · A2 = 0, X0 · A0 + X1 · (A1 + R · A2) = 0

I

∑

i Xi · 1 = 1 equivalent to
||X0|| + (X1 ·

∑

n∈N
Rn)1 = 1 equivalent to

||X0|| + ||X1 · (Id − R)−1|| = 1



19/37

Looking for R: a fixed point approach
Observation. A1 is invertible and −A−1

1 is non negative.

Define R0 ≡ 0 and ∀n Rn+1 ≡ −(A0 + R2
n · A2)A

−1

1 .

Then by induction:

I Rn is a increasing sequence of non negative matrices

I ∀i ≥ 1 Xi+1 ≥ Xi · Rn.

Thus the sequence Rn is bounded and so convergent.

Let R ≡ limn→∞ Rn.

Then: ∀i ≥ 2 Xi ≥ Xi−1 · R and R = −(A0 + R2 · A2)A
−1
1

Once R is computed, it remains to solve the following system:
I X0 · B + X1 · A2 = 0, X0 · A0 + X1 · (A1 + R · A2) = 0

I

∑

i Xi · 1 = 1 equivalent to
||X0|| + (X1 ·

∑

n∈N
Rn)1 = 1 equivalent to

||X0|| + ||X1 · (Id − R)−1|| = 1



19/37

Looking for R: a fixed point approach
Observation. A1 is invertible and −A−1

1 is non negative.

Define R0 ≡ 0 and ∀n Rn+1 ≡ −(A0 + R2
n · A2)A

−1

1 .

Then by induction:

I Rn is a increasing sequence of non negative matrices

I ∀i ≥ 1 Xi+1 ≥ Xi · Rn.

Thus the sequence Rn is bounded and so convergent.

Let R ≡ limn→∞ Rn.

Then: ∀i ≥ 2 Xi ≥ Xi−1 · R and R = −(A0 + R2 · A2)A
−1
1

Once R is computed, it remains to solve the following system:
I X0 · B + X1 · A2 = 0, X0 · A0 + X1 · (A1 + R · A2) = 0

I

∑

i Xi · 1 = 1 equivalent to
||X0|| + (X1 ·

∑

n∈N
Rn)1 = 1 equivalent to

||X0|| + ||X1 · (Id − R)−1|| = 1



20/37

Some References

M. F. Neuts
Matrix-geometric solutions in stochastic models - an algorithmic approach
The John Hopkins University Press, London, 1981

B.R. Haverkort
Approximate performability and dependability modelling
using generalized stochastic Petri nets.
Performance Evaluation, 18(1):61-78, 1993

B.R. Haverkort
Matrix-geometric solution of infinite stochastic Petri nets.
International Performance and Dependability Symposium, p. 72-81,
IEEE Computer Society Press, 1995

B.R. Haverkort
Performance of Computer Communication Systems. John Wiley & Sons, 1998



21/37

Plan

Product-form Petri Nets

Unbounded Petri Nets

3 Composition of Nets

Phase-Type Petri Nets



22/37

A Composition of Two Nets

The infinitesimal generator Q









−(γ + λ) γ λ 0
γ′ −(γ′ + λ) 0 λ
λ′ 0 −(γ + λ′) γ
µ λ′ γ′ −(γ′ + λ′ + µ)








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Decomposition of the Generator

Q =









−λ 0 λ 0
0 −λ 0 λ
λ′ 0 −λ′ 0
0 λ′ 0 −λ′









+









−γ γ 0 0
γ′ −γ′ 0 0
0 0 −γ γ
0 0 γ′ −γ′









+ µ ·









0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 −1









Decomposition w.r.t. the activities inside the net

I A matrix for the local activity of every component Qi

(here two components)

I A matrix for every synchronised transition Bt with coefficients in {−1, 0, 1}
(here a single transition)

How to exploit the regularity of these matrices?
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A Key Operation: the Tensorial Product (1)

Q1, the matrix associated with the first component fulfils:

Q1 = Ql1 ⊗ Id

I where Ql1 is the generator of the local Markov chain of the first component;

I where Id the identity matrix witnesses the independence from the second
component.
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A Key Operation: the Tensorial Product (2)

Q2, the matrix associated with the first component fulfils:

Q2 = Id ⊗ Ql2

I where Ql2 is the generator of the local Markov chain of the second
component;

I where Id the identity matrix witnesses the independence from the first
component.
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A Key Operation: the Tensorial Product (3)

Bt, the matrix associated with the synchronized transition fulfils:

Bt = Bt,1 ⊗ Bt,2 −D(Bt,1 ⊗ Bt,2)

I where Bt,i is the indicator of local state change due to t in the ith
component;

I where D is the matrix operator summing the items of a line in the diagonal
item.
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Steady-State Analysis

via Tensorial Decomposition

Iterative computation of the steady-state distribution
I Select any initial distribution π0.

I Iterate πn+1 = πn(Id + 1
c
· Q)

with c any value greater than maxi(|Q[i, i]|)

I Stop when the successive values are enough close

Observation
The iterative approach is based on the product of a vector by a matrix.

When C = A ⊗ B computing v · C can be done:
.

I without computing C thus saving space;

I and more efficiently thus saving time.
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The Vector-Matrix Multiplication

(

x11 x12 x21 x22

)









a11b11 a11b12 a12b11 a12b11

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b11

a21b21 a21b22 a22b21 a22b22









=









(x11a11 + x21a21)b11 + (x12a11 + x22a21)b21

(x11a11 + x21a21)b12 + (x12a11 + x22a21)b22

(x11a12 + x21a22)b11 + (x12a12 + x22a22)b21

(x11a12 + x21a22)b12 + (x12a12 + x22a22)b22









=









z11b11 + z12b21

z11b12 + z12b22

z21b11 + z22b21

z21b12 + z22b22









=









(

z11

z12

)

· B
(

z21

z22

)

· B









where
(

z11 z21

)

=
(

x11 x21

)

· A and
(

z12 z22

)

=
(

x12 x22

)

· A
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Phase-Type Distribution

A phase-type distribution is defined by:
I A continuous-time Markov chain with a single terminal scc consisting in an

absorbing state.

I The associated distribution is the time to reach the absorbing state.

Interest of phase-type distributions
I Any distribution can be approximated as close as possible by a phase-type

distribution.

I Warning: in some cases the number of states to obtain a “good”
approximation can be prohibitive.
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Approximating a Dirac Distribution

A random variable X with d-Dirac distribution is defined by Pr(X = d) = 1

Erlang distributions
I A sequence of n non absorbing states with output rate n/d ending in the

absorbing state.

I The mean value of the absorbing time is d.

I The variance of the absorbing time is d2

n
; so it goes to 0 when n goes to ∞.

(the coefficient of variation is 1√
n
)

Erlang distributions are the appropriate approximations of Dirac distributions
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Increasing the coefficient of variation

Let d be the mean of some distribution with a great coefficient of variation.

Hyperexponential distributions
I A probabilistic choice between exponential distributions with different rates.

I The mean value of the absorbing time is the weighted average of mean values
of these distributions.

I The coefficient of variation is always greater than 1.

For instance, the given distribution can be approximated by a three-state
hyperexponential distribution (with two parameters p, n).
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A Net with a Phase-Type Distribution

A net with phase-type distributions
I Its stochastic process is still a Markov chain.

I whose transitions are either external transitions modifying the current marking

I or internal transitions updating the stage of a phase-type distribution.

How to exploit the regularity of the chain?



34/37

A Net with a Phase-Type Distribution

A net with phase-type distributions
I Its stochastic process is still a Markov chain.

I whose transitions are either external transitions modifying the current marking

I or internal transitions updating the stage of a phase-type distribution.

How to exploit the regularity of the chain?



35/37

Partition of the State Space

Partition the markings

I Markings with same enabled phase-type transitions are grouped.

I Let M be such a class of markings with t1, . . . , td these enabled transitions.

I Then the corresponding states say SM in the Markov chain are (m, q1, . . . , qd)
with m ∈ M and qi being a non absorbing state of the distribution of ti.

Structure of the generator between two classes SM and SM′

I Consider the block of Q indexed by SM × SM′ .

I Then a tensorial expression of.this block can be obtained where the involved
matrices depends either on:

1. either on the change of marking by exponential transitions or phase-type
transitions when reaching absorbing states (external transitions)

2. or on phase-type transitions that do no reach absorbing state (internal
transitions).
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Example of Block Tensorial Expression

Q′ = E ⊗ Id + Id ⊗ L + µ(F ⊗ G −D(F ⊗ G))

where E corresponds to the firing of the exponential transition,
L corresponds to the internal change of the distribution

E =

0

B

B

B

@

−λ λ 0 0 . . . 0

0 −λ λ 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 −λ λ

0 . . . 0 0 0 0

1

C

C

C

A

L =

0

B

B

B

@

−µ µ 0 0 . . . 0

0 −µ µ 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 −µ µ

0 . . . 0 0 0 0

1

C

C

C

A

and F, G correspond to the firing of the phase-type transition

F =

0

B

B

B

@

0 0 0 0 . . . 0

1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 1 0 0

0 . . . 0 0 1 0

1

C

C

C

A

G =

0

B

B

B

@

1 0 0 0 . . . 0

1 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

1 . . . 0 0 0 0

1 . . . 0 0 0 0

1

C

C

C

A
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