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Why diagnosis?

Faults and/or failures are unavoidable for some systems:

I Components have a finite lifetime;

I Reactive systems suffer pathological behaviour of the environment.

Consequences of unhandled faults may be critical:

I Human casualties (e.g. pacemaker);

I Financial losses (e.g. mission to Mars).

Necessity of a reactive and sound diagnoser.
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Diagnosis: from failures to faults

Example: MYCIN, an expert system, that used artificial intelligence to identify
bacteria causing severe infections (1975).
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Diagnosis: detecting faults

Fault detection: “a subfield of control engineering which concerns itself with
monitoring a system, identifying when a fault has occurred, and pinpointing the
type of fault and its location.”
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Diagnosis: predicting faults

Enhancing reactivity
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Active diagnosis: forcing detection

Combining control and diagnosis
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Outline

1 Semantical Issues of Diagnosis

Exact Diagnosis

Approximate Diagnosis

Algorithmic Issues of Diagnosis
Exact Diagnosis of Finite Models

Approximate Diagnosis of Finite Models

From Diagnosis to Active Diagnosis
Active Diagnosis of LTS

Active Diagnosis of Probabilistic LTS
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Observing a labelled transition system
States are unobservable.

Events are either observable or unobservable.

Faults (f) are unobservable.
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An execution sequence yields an observed sequence.

Let σ = q0uq3aq4cq0fq1a(q2b)
ω. Then P(σ) = acabω.

We only consider live and convergent systems:

I There is at least an event from any state.

I There is no infinite sequence of unobservable events from any reachable state.
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Classification of observed sequences

An execution sequence is faulty if it contains a fault otherwise it is correct.

An observed sequence σ is surely faulty if for all σ′ ∈ P−1(σ), σ′ is faulty.

An observed sequence σ is surely correct if for all σ′ ∈ P−1(σ), σ′ is correct.

An observed sequence σ is ambiguous if it is neither surely faulty nor surely correct.
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adcbω is surely faulty: the occurrence of d implies the occurrence of f .

acbω is surely correct: P−1(acb) = {q0uq3aq4cq5bq5}.

abω is ambiguous: P−1(abω) = {q0uq3a(q4b)
ω, q0fq1a(q2b)

ω}.
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Diagnosis of discrete event systems

Objective: tell whether a fault f occurred, based on observations.

q0

f1 f2 f3

q1 q2

f

u

a

c

c

cb

b c

c+ X correct
ac+ 7 faulty
b+ ? ambiguous

Diagnosability (in this context): all observed sequences are unambiguous.

Diagnoser: assigns verdicts to observed sequences D : Σ∗o → {X,7, ?}
I Soundness: if a fault is claimed, a fault occurred.

I Reactivity: every fault will be detected.
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pLTS

A probabilistic labelled transition system (pLTS) is a live LTS with a transition
probability matrix P.

q0

q1 q2

q5q3 q4

f , 12

u, 12

a,1

d, 12

a,1

c, 13

c, 13

b,1

b, 12

b, 13

Without labels, a pLTS is a discrete time Markov chain.

Without transition probabilities, a pLTS is a LTS.
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Diagnosis of probabilistic systems

q0

f1 f2 f3

q1 q2

f ,1/2

u,1/2

a,1/2

c,1/2

c

cb,1/2

b,1/2 c

b+ ambiguous but...

lim
n→∞

P(fbn + ubn) = 0

How to handle probabilities?

A first answer: discard pathologic behaviours (i.e. with null probability).
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All runs or faulty runs?

q0 f1 f2q1
f ,1/2 a,1/2u,1/2

a,1/2 ba

a+ is ambiguous

lim
n→∞

P(fan) = 0

lim
n→∞

P(uan) =
1

2

Reactivity specifications:

I Detect a fault, almost surely.

I Detect if a run is faulty or correct, almost surely.
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Infinite sequences or their finite prefixes?

q0 q2 f1 f2q1
u,1/2 f ,1/2 a,1/2u,1/2

a,1 b,1/2b,1/2a,1/2

aω is surely correct.

an is ambiguous and

P(q0u(q1a)n) = 1
2 .

I Infinite sequences are almost surely non ambiguous.

I The probability of ambiguous prefixes tends to 0.
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Four diagnosability notions

Diagnosability All runs Faulty runs

Finite prefixes FA
⇒
6⇐ FF

⇓ 6⇑ ⇓⇑∗

Infinite sequences IA
⇒⇒⇒
6⇐ IF

∗ assuming finitely-branching models
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Quest for a characterisation

Objective: a characterisation that can be split between the qualitative and the
quantitative parts of the system.

N is diagnosable iff PN (B) ./ p, where:

I p ∈ {0, 1}, ./ ∈ {<,=, >};
I (?) B belongs to a low level of Borel hierarchy and

(?) B only depends on the underlying LTS.

Definitions are not directly applicable:

• IA P(Amb∞) = 0 Amb∞ analytic set, a priori not Borel
• IF P(FAmb∞) = 0 FAmb∞ analytic set, a priori not Borel
• FA limn→∞ P(Ambn) = 0 (Ambn)n∈N family of Borel sets
• FF limn→∞ P(FAmbn) = 0 (FAmbn)n∈N family of Borel sets
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Characterisation in pathL:
an expressive linear temporal logic

φ ::= α | ¬φ | φ ∧ φ | 3φ where α is a finite path formula

pathL subsumes all ω-regular linear specification languages

I f(ρ) ≡ ρ faulty

I U(ρ) ≡ ∃ρ′ correct s.t. P(ρ) = P(ρ′)

N is FF-diagnosable iff N |= P=0(32(U ∧ f)).

also valid for IF-diagnosability if N is finitely-branching

I W(ρ) ≡ last observation does not change the time of the earliest possible fault

N , finitely branching, is IA-diagnosable iff N |= P=0(32(U ∧W)).
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Expressing FA-diagnosability is hard!

There does not exist a Fσ set B only depending on the underlying LTS such that
P(B) = 0 characterises FA-diagnosability.

q0qff1 q1 q2 . . .

1
2 · u

1
2 · u

1
3 · f

1
3 · a

1
3 · b

1
2 · b

1
2 · c

(1− p1) · a

p1 · b

(1− p2) · a

p2 · b

There does not exist a Borel set B only depending on the underlying LTS such
that P(B) > 0 characterises FA-diagnosability.

q0qff1 qε qw

qwa

qwb

qa

qb

w. . . . . .

1
2 · u

1
2 · u

1
3 · f

1
3 · a

1
3 · b

1
2 · b

1
2 · c

(1−
p(ε

)) · a

p(ε) · b

(1−
p(w

)) · a

p(w) · b
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Predictability

Objective: tell whether a fault will occur, based on observations.

q0 q1 q2 f1q3
b fca

ba b

a+ X correct
b+c 7 surely eventually faulty
b+ 7 a.s. eventually faulty

surely 0-predictable almost surely 1-predictable not 2-predictable

Two notions of soundness:

I sure: if a fault is claimed, a fault will occur

I almost-sure: if a fault is claimed, a fault will almost-surely occur

Reactivity: a fault is detected at least k steps before occurrence.
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Prediagnosability

Objective: detect and foresee faults analysing past and future

q0f1 q1

q2

f

af

b

a

a

b

b+ X correct
a+ 7 a.s. eventually faulty

Soundness: If a fault is claimed, a fault happened or (almost) surely will.

Reactivity: Faults are almost surely claimed.
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Relations between the specifications

FA-diagnosable

IA-diagnosable FF-diagnosable

IF-diagnosable

sure-prediagnosable

prediagnosable

for finitely
branching pLTS

k-sure-predictable

k-predictable
for all k

for all k
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Exact diagnosis versus
approximate diagnosis

q0 qfqc
f , 1

2u, 1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Not exactly diagnosable

However a high proportion of b implies a highly probable faulty run.

Relaxed Soundness: if a fault is claimed the probability of error is small.
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Proportion of correct runs

Given an observation sequence σ ∈ Σ∗o,

CorP(σ) =
P({π−1(σ) ∩ correct})

P({π−1(σ)})

q0 qfqc
f , 1

2u, 1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

CorP(a) = 3/4, CorP(ab) = 1/2, CorP(abb) = 1/4, CorP(abbb) = 1/10.
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Relaxing Soundness

Given ε ≥ 0, an ε-diagnoser fulfills

I Soundness: If a fault is claimed after an observation sequence σ, then
CorP(σ) ≤ ε.

I Reactivity: Given a faulty run ρ, the measure of undetected runs extending ρ
converges to 0.

A uniform ε-diagnoser ensures for reactivity a uniform convergence

over the faulty runs.

0-diagnosers correspond to (exact) FF-diagnosers.

A model is (uniformly) AA-diagnosable, for accurately approximately diagnosable,

if it is (uniformly) ε-diagnosable for all ε > 0.
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Illustration

q0 qfqc
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2u, 1
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a, 1
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4
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4

• AA-diagnosable

Let ρ = q0
f−→ qf · · · qf . Let ρf extending ρ.

Almost surely, when |ρf | → ∞, ρf has more b’s than a’s.

Let ρc the correct run with P(ρf ) = P(ρc).

Almost surely, when |ρc| → ∞, ρc has less b’s than a’s.

• Not uniformly AA-diagnosable

Let ε = 1
2 , α > 0 and ρ be the faulty run with P(ρ) = an.

Then for all ρf extending ρ with |ρf | ≤ n+ |ρ|, CorP(P(ρ)) ≥ 1
2 .

P(ρf |ρ � ρf ∧ |ρf | = k + |ρ| ∧ CorP(P(ρf )) ≤ ε) ≤ αP(ρ) implies k ≥ n.
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Relations between the specifications

uniformly
exact diagnosis

exact diagnosis

uniformly
AA-diagnosable

uniformly
ε-diagnosable

AA-diagnosable ε-diagnosable

*

for all ε

for all ε

∗ assuming finite models
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Outline

Semantical Issues of Diagnosis
Exact Diagnosis

Approximate Diagnosis

2 Algorithmic Issues of Diagnosis

Exact Diagnosis of Finite Models

Approximate Diagnosis of Finite Models

From Diagnosis to Active Diagnosis
Active Diagnosis of LTS

Active Diagnosis of Probabilistic LTS
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Outline

1 Semantical Issues of Diagnosis

Exact Diagnosis

Approximate Diagnosis

2 Algorithmic Issues of Diagnosis

Exact Diagnosis of Finite Models

Approximate Diagnosis of Finite Models

3 From Diagnosis to Active Diagnosis

Active Diagnosis of LTS

Active Diagnosis of Probabilistic LTS
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Characterisation of diagnosability
Specification of IF-diagnosability: Infinite sequences, Fault diagnosis

A q0 q2 f1 f2q1
u f au

a bba

Observer: tracks possible correct states after given observed sequence.

OA {q0} {q1,q2} ∅
a b

b

a,ba

A is not IF-diagnosable
iff

there exists a state (q, U) in a BSCC of A×OA with q faulty and U 6= ∅.
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Diagnoser synthesis

For every IF-diagnosable system with n correct states
one can build an IF-diagnoser with at most 2n states.

Diagnoser derived from observer OA: emits 7 in state ∅.

There is a family (An) of IF-diagnosable systems such that
An has n+ 1 correct states and any IF-diagnoser needs 2n states.

An

q0

f0

q1 q2 ... qn

f1 f2 ... fn

a a,b a,b a,b

f

b a,b a,b a,b

a,b c

c
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Diagnosability is in PSPACE

Diagnosability is decidable in PSPACE for probabilistic systems.

Sketch of proof

I relies on the characterisation on A×OA

I avoids building the product

I uses Savitch’s theorem for appropriate guesses
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Diagnosability is PSPACE-hard
L ⊆ Σ∗ is eventually universal if ∃v ∈ Σ∗, v−1L = Σ∗.

The eventual universality problem for NFA is PSPACE-hard.

Diagnosability is PSPACE-hard.

Reduction from eventual universality to diagnosability.

q′0 f0q0
f

Σ

u

NFA

A not diagnosable iff

A×OA contains a BSCC where each state has the form (f0, U) with U 6= ∅
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Comparison with non-probabilistic
discrete event systems

Diagnosability is PSPACE-complete for probabilistic systems.

Diagnosability is decidable in PTIME for non-probabilistic systems.
[Jiang, Huang, Chandra, Kumar TAC 2001]

Sketch of proof

I build the twin-product with a copy restricted to correct states

I check for SCC with faulty states in the first component

Erroneous adaptation to probabilistic case in [Chen, Kumar TASE 2013].
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Revisiting the relations

FA-diagnosable

IA-diagnosable FF-diagnosable

IF-diagnosable

sure-prediagnosable

prediagnosable

for finitely
branching pLTS

k-sure-predictable

k-predictable
for all k

for all k

PSPACE-complete
(for finite pLTS)

NLOGSPACE-complete
(for finite pLTS)
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Outline

1 Semantical Issues of Diagnosis

Exact Diagnosis

Approximate Diagnosis

2 Algorithmic Issues of Diagnosis

Exact Diagnosis of Finite Models

Approximate Diagnosis of Finite Models

3 From Diagnosis to Active Diagnosis

Active Diagnosis of LTS

Active Diagnosis of Probabilistic LTS
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Complexity of the problems

Simple Uniform

ε-diagnosability undecidable undecidable

AA-diagnosability PTIME undecidable



39/74

AA-diagnosability: a simple case

Initial fault pLTS. Initially, an unobservable split towards two subpLTS:

I a correct event u leads to a correct subpLTS;

I a faulty event f leads to an arbitrary subpLTS.

q0 qfqc q′f
f , 1

2u, 1
2 f , 1

2

a, 1
2a, 1

4

b, 3
4

a, 3
4

b, 1
4

I an initial state, q0;

I an arbitrary pLTS with states {qf , q′f};
I a correct pLTS with state qc.
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AA-diagnosability for initial-fault pLTS
• Transform the correct and arbitrary subpLTS in labelled Markov chains by
merging the unobservable transitions.

qfqc q′f

1
2

1
2

a, 3
8

b, 1
8

a, 1
2a, 1

4

b, 3
4

a, 3
4

b, 1
4

Mc Mf

• PM (E) = measure of infinite runs of M with observation in E.

Distance 1 problem: ∃ (measurable) E ⊆ Σωo ,PMc(E)− PMf (E) = 1?

• Illustration: E = {σ | lim supn→∞
|σ↓n|b
|σ↓n|a > 1}

The distance 1 problem is decidable in PTIME.

[CK14] Chen and Kiefer

On the Total Variation Distance of Labelled Markov Chains, CSL-LICS’14.
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Solving AA-diagnosability
• Identifying relevant pairs of states by reachability analysis in the synchronised
self-product.

q0

f

q

ρf

ρc

P(ρc)=P(ρf )

• Checking distance 1 for all relevant pairs.

f

q

Mf

Mc

AA-diagnosability is decidable in PTIME.

However an ε-diagnoser may need infinite memory.
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The emptiness problem
for probabilistic automata (PA)

a, 12

a, 12

a

a, 12

a

c

b

b

a, 12
a

P(b) = 0,P(baa) = 1
4 ,P(baaa) = 7

8

Emptiness problem: Given a PA A,
∃w ∈ Σ∗,PA(w) > 1

2 ?

The emptiness problem for PA is undecidable even when for all w, 1
4 ≤ PA(w) ≤ 3

4 .

[P71] Paz, Introduction to Probabilistic Automata, Academic Press 1971.
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From PA to uniform AA-diagnosability

q1 q2
I[q1] I[q2]

a,Pa[q1, q2]

a,Pa[q2, q1]

q0

qu1 qu2

bu

u, I[q1]
2

u, I[q2]
2

a, Pa[q1,q2]
1+|Σ|

a, Pa[q2,q1]
1+|Σ|

], I[q1]
1+|Σ|

], I[q2]
1+|Σ|

[, 1
2

], 1
2

[, 1
1+|Σ|

qf1 qf2

bf

f , I[q2]
2

f , I[q1]
2

a, Pa[q1,q2]
1+|Σ|

a, Pa[q2,q1]
1+|Σ|

], I[q2]
1+|Σ|

], I[q1]
1+|Σ|

[, 1

[, 1
1+|Σ|

If ∃w ∈ Σ∗o,PA(w) > 1/2 then limn−→∞ CorP((w])n[) = 1.

If ∀w ∈ Σ∗o,PA(w) ≤ 1/2 then ∀n CorP((w])n[) ≤ 3
4 .
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a, Pa[q2,q1]
1+|Σ|

], I[q2]
1+|Σ|

], I[q1]
1+|Σ|

[, 1

[, 1
1+|Σ|

If ∃w ∈ Σ∗o,PA(w) > 1/2 then limn−→∞ CorP((w])n[) = 1.

If ∀w ∈ Σ∗o,PA(w) ≤ 1/2 then ∀n CorP((w])n[) ≤ 3
4 .
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Controllable LTS and active diagnoser

Events are also partitioned in controllable and uncontrollable events.

Controllable events must be observable.

A controller forbids controllable events depending on the current observed
sequence.

An active diagnoser is a controller such that the controlled LTS:

I is still live;

I does not contain ambiguous sequences.

The delay of an active diagnoser is the maximal number of event occurrences
between a execution sequence is faulty and an observed sequence is surely faulty.
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An example of active diagnoser

The ambiguous sequences are {a, b}∗bω.

The (finite-state) active diagnoser forbids two consecutive ’b’.

Its delay is 3 (at most an occurrence of bac).

q0 q1 q2
f a

a,b b c

Σ,⊥ Σ\{b},⊥Σ,>

b

a

c

c

ac
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Active diagnosis problems

• The active diagnosis decision problem, i.e. decide whether a LTS is actively
diagnosable.

• The synthesis problem, i.e. decide whether a LTS is actively diagnosable and in
the positive case build an active diagnoser.

• The minimal-delay synthesis problem, i.e. decide whether a LTS is actively
diagnosable and in the positive case build an active diagnoser with minimal delay.
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Unambiguous sequences of the LTS

• Build a Büchi automaton as a synchronized product of the LTS with fault
memory and the LTS without faults.

q0

q1 q2

q5q3 q4

f

u

a

d

a

c

c

b

b

b

(q0,q0)

(q4,q4) (q5,q5)

(q2,q4)

(q0,q5)

(q5,q0)

a

a

c

c

c
c

b

b

b

• Determinize and complement it as:

I a Street automaton with 2O(n2 log(n)) states
where n is the number of states of the LTS.

I a Büchi automaton with 32n2

states using the breakpoint construction
of Miyano and Hayashi appropriate for the initial Büchi automaton.
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An optimal characterization
Build a deterministic Büchi automaton whose states are triples (U, V,W ) with:

I U the set of possible states reached by a correct sequence;

I W the set of possible states reached by an earliest faulty sequence;

I V the set of other possible states reached by faulty sequences.

The accepting states are (U, V,W ) with:

I U = ∅, i.e. the observed sequence is (and will remain) surely faulty;

I W = ∅, i.e. the earliest faulty sequences are discarded.

q0

q1 q2

q5q3 q4

f

u

a

d

a

c

c

b

b

b

({q0},∅,∅) ({q4},∅,{q2})

(∅,∅,{q2,q4})

({q0,q5},∅,∅)

(∅,∅,{q0,q5})(∅,∅,{q4})

({q5},∅,∅)

(∅,∅,{q5})

a

d

c

a

b

c

d a

c
b

b b

b bb

The number of states is at most 7n.
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A lower bound for ambiguity

q0 q1 q2 qn−1 qn qn+1

l0 l1 l2 ln−1 ln ln+1

r0 r1 r2 rn−1 rn rn+1

...

...

...

f

f

f

f

f

f

f

f

a,b a,b a,b c,d

a a,b a,b

d

c

b a,b a,b

c

d

a

b

b

a,b

Ambiguous sequences are either {a, b}ka{a, b}n−1daω or {a, b}kb{a, b}n−1caω

(with 0 ≤ k ≤ n− 1).

So a deterministic automaton for ambiguity must have (at least) 2n states
reachable after n events.
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Büchi games

A two-player (I and II) Büchi game is defined by:

I A graph (V,E) whose vertices are owned by players with accepting vertices F ;

I In a vertex v owned by a player, he selects an edge (v, w) and the game goes
on with w as current vertex.

I Player I wins if Player II is stuck in a dead vertex or the infinite path infinitely
often visits F .

Game problems:

I Does there exists a winning strategy for Player I?

I In the positive case how to build such a strategy?

Classical results:

I The decision problem is PTIME-complete.

I In the positive case, there is a positional winning strategy.
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A Büchi game for active diagnosis

Vertices of the game

I The vertices of Player I are the states of the Büchi automaton.

I The vertices of Player II are pairs of states of the Büchi automaton
and (subsets of) events of the LTS.

I The accepting vertices are the accepting states of the Büchi automaton.

Edges of the game

I There is an edge ((U, V,W ), ((U, V,W ),Σ•)) if Σ• is a subset of events
(including the uncontrollable ones) such that from all state of U ∪ V ∪W ,
there is an observed sequence labelled by some e ∈ Σ•.

I There is an edge (((U, V,W ),Σ•), ((U, V,W ), e) if e ∈ Σ•.

I There is an edge (((U, V,W ), e), (U ′, V ′,W ′) if there is a transition

(U, V,W )
e−→ (U ′, V ′,W ′) in the Büchi automaton.
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Example of a Büchi game

q0 q1 q2
f a

a,b b c

({q0},∅,∅) ({q0},∅,{q2})

({q0},{q2},∅)({q0},∅,{q1})

({q0},{q1},∅) (∅,∅,{q2})

0 1

32

4 5

a

b

a

b

b

ab

a

a
c

c

b

c

0

(0,{a,c})

(0,{a,b,c})

(0,{b,c})

(0,a)

(0,c)

(0,b)

1

2

...
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Results of this construction

Correspondence between problems

I There is a winning strategy for Player I
if and only if there is an active diagnoser.

I The states of this active diagnoser are the states of the Büchi automaton.

Consequences

I The decision problem is EXPTIME-complete (the lower bound holds by
reduction from safety games with partial observation D. Berwanger and L.
Doyen FSTTCS 2008).

I The synthesis algorithm yields an active diagnoser with 2O(n) states.
The previous synthesis algorithm yields a doubly exponential number of states
(M. Sampath, S. Lafortune, and D. Teneketzis, IEEE TAC 1998).

I For all n ∈ N, there is a LTS with n states such that any active diagnoser
requires 2Ω(n) states.
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A lower bound for the synthesis problem

q0 q1 q2 qn−1 qn qn+1

l0 l1 l2 ln−1 ln ln+1

r0 r1 r2 rn−1 rn rn+1

...

...

...

f

f

f

f

f

f

f

f

a,b a,b a,b c,d

a a,b a,b

d

c

b a,b a,b

c

d

a

b

b

a,b

An active diagnoser must forbid a d (resp. c) if it has observed an a (resp. b) n
times before.

So an active diagnoser must have (at least) 2n states
reachable after n observable events.
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What about minimal delay synthesis?

Our synthesis algorithm provides a delay at most twice the minimal delay.

For all n ∈ N, there is a LTS with n states such that
any active diagnoser with minimal delay requires 2Ω(n log(n)) states.

We have designed a synthesis algorithm of an active diagnoser with minimal delay
that requires 2O(n2) states.
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Safe diagnosability

A pLTS is safely diagnosable if it is diagnosable and the set of correct sequences
has positive measure.

q0

q1 q2

q5q3 q4

safely diagnosable

f , 12

u, 12

a,1

d, 12

a,1

c, 13

c, 13

b,1

b, 12

b, 13

q0

q1 q2

q3 q4

diagnosable but not safely diagnosable

f , 12

u, 12

a,1

d, 12

a,1

c, 12

b, 12

b, 12
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cLTS

A controllable probabilistic labelled transition system (cLTS) is a live pLTS

with integer weights on transitions.

and a partition between controllable and uncontrollable events.

An controller forbids controllable events depending on the current observed
sequence. It can randomly select the forbidden events.

A controller must not introduce deadlocks.

Let C be a cLTS and π be a controller. Then Cπ is a pLTS where the probability
are obtained by normalization among the allowed events.

Controller π is a (safe) active diagnoser if Cπ is (safely) diagnosable.
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Illustration

A deterministic active diagnoser π:
Forbid two consecutive b after an a.

q0

q1 q2

q5q3 q4

f , 12

u, 12

a,1

d, 12

a,1

c, 13

c, 13

b,1

b, 12

b, 13

ε,q0,Σ

ε,q1,Σ a,q2,Σ ab,q2,Σ\{b}

ε,q3,Σ a,q4,Σ ab,q4,Σ\{b}

ε,q4,Σ

ε,q5,Σ

f , 12

u, 12

a,1 b, 12
d, 12

d,1

a,1 b, 13 c, 12

c, 13 c, 13

c, 13

c, 13
c, 12

b,1

b, 13
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Active probabilistic diagnosis

The active probabilistic diagnosis problem asks whether

there exists an active diagnoser π for C.

The safe active probabilistic diagnosis problem asks whether

there exists a safe active diagnoser π for C.

The synthesis problems consist in building a (safe) active diagnoser π for C
in the positive case.
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Partially observed Markov decision process
A partially observable Markov decision process (POMDP) is a tuple
M = 〈Q, q0,Obs,Act, T 〉 where:

I Q is a finite set of states with q0 the initial state;

I Obs : Q→ O assigns an observation O ∈ O to each state.

I Act is a finite set of actions;

I T : Q× Act→ Dist(Q) is a partial transition function.

q0

q1

q2

...a

1
3

2
3

Given a sequence of observations, a strategy randomly selects an action to be
performed.

Given a strategy, a POMDP becomes a (possibly infinite) pLTS.
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From cLTS diagnosis to POMDP problems
Let C be a cLTS and its Büchi automaton B, MC is built as follows.

States are pairs (l, q) with l a state of B and q a state of C with Obs(l, q) = l.

Actions of MC are subset of events that includes the uncontrollable events.

Given some action Σ•, the transition probability of MC from (l, q) to (l′, q′) is:

I the sum of probabilities of paths in C from q to q′;

I labelled by unobservable events of Σ•;

I ending with an observable event b ∈ Σ• such that l
b−→B l′.

The probability of any such path is the product of the individual step probabilities.

The latter are then defined by the normalization of weights w.r.t. Σ•.

When in C, some path reaches a state where no event of Σ• is possible,

one reaches in MC an additional state lost.
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Illustration

q0

q1 q2

q5q3 q4

f , 12

u, 12

a,1

d, 12

a,1

c, 13

c, 13

b,1

b, 12

b, 13

({q0},∅,∅),q0

({q4},∅,{q2}),q2

({q4},∅,{q2}),q4

lost

...

...

Σ

Σ\{a}

1
2

1
2

1
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Decidability of the active diagnosis problem

• C is actively diagnosable iff there exists a strategy in MC such that:

almost surely 23(W = ∅ ∨ U = ∅)

The existence of a strategy in a POMDP for almost surely satisfying a Büchi
objective is decidable (Baier, Bertrand, Größer, FoSSaCS 2008).

The proof in (Bertrand, Genest, Gimbert, LICS 2009) is more general and elegant.

Analyzing the reduction to the POMDP problem, we get that the active diagnosis
problem is EXPTIME-complete.

• C is safely actively diagnosable iff there exists a strategy in MC such that:

I almost surely 23(W = ∅ ∨ U = ∅);

I with positive probability 2U 6= ∅.
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Belief-based diagnosers are not enough

In our context, the belief is the current state of the Büchi automaton.

q4q3q0

q1

q2

a

a

a, ba, b

b

a

c
f

The cLTS is straightforwardly diagnosable but it is not safe.

A safe active diagnoser must perform a guess and keep in memory one bit:

I forbidding a after an odd number of observations;

I and forbidding b after an even number of observations.
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Finite-memory diagnosers are not enough

q0q1q2 r1 r2

r0

fu aa

a f

aa a

c

a

An observed sequence σ is surely faulty iff σ ∈ Σ∗cω.

An observed sequence σ is surely correct iff σ ∈ (a+a)ω.
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Finite-memory diagnosers are not enough

q0q1q2 r1 r2

r0

fu aa

a f

aa a

c

a

A safe active diagnoser

Pick any sequence of positive integers {αi}i≥1 such that
∏
i≥1 1− 2−αi > 0.

Let A = {a, u, f , c} and A = {a, u, f , c}.
Let π be the controller that consists in selecting, at instant n,
the nth subset in the following sequence Aα1AAα2A . . ..

Then π is a safe active diagnoser:

I All observed sequences are either surely faulty or surely correct.

I The probability that a sequence is correct is 1
2

∏
i≥1 1− 2−αi > 0.

There is no finite-memory safe active diagnoser.
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From blind POMDP to safe active diagnosis

The existence of an infinite word accepted by a Büchi probabilistic automaton with
positive probability is undecidable (Baier, Bertrand, Größer, Fossacs 2008).

The existence of a winning strategy with positive probability for a Büchi objective
in a blind POMDP (i.e. without observation) is undecidable (Chatterjee, Doyen,
Gimbert, Henzinger, MFCS 2010).

We reduce the latter problem to a safe active diagnosability problem.

Corollary.

The problem whether, given a POMDP M with subsets of states F and I, there
exists a strategy π with Pπ(M |= 23F ) = 1 and Pπ(M |= 2I) > 0, is undecidable.

Observation: The existence of a strategy for each objective is decidable.
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Scheme of the reduction

iv

s

t

b, p′

a, p

M

q0 r1 r2

r0

i1v1

s1

t1

i2v2

s2

t2

C

fu a, b
b, p′

b, p′

b, p′

a, p

a, p

b

a

f

a, b

ca, p

An observed sequence σ is surely faulty iff σ ∈ Σ∗cω.

An observed sequence σ is surely correct iff σ ∈ ((a+ b)+(a+ b))ω.
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Restriction to finite-memory diagnosers

Observation

A priori the finite-memory requirement does not ensure decidability.

A decision procedure in EXPTIME:

I Computing the safe beliefs that ensure the existence of an active diagnoser
surely yielding correct sequences.

I Checking the existence of a diagnoser that ensure active diagnosability almost
surely and reaching a belief including a safe belief with positive probability.

The active diagnoser only requires an additional boolean (for switching its mode).

The problem is EXPTIME-hard (using the same reduction as before).
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Conclusion

Revisiting concepts introduced by the “control theory” community

both from a semantical and algorithmic points of view.

I Complete classification of the specifications;

I Useful characterisations using logic, automata theory, games, etc.

I Design of new or more efficient algorithms (even for infinite-state systems);

I (Almost) matching complexity lower bounds and undecidability results.
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Perspectives

Short-term

I Closing the gap between lower and upper bounds

related to the minimal delay synthesis problem;

I Refining the safety requirement;

Long-term

I Studying the related problems (e.g. opacity, privacy, etc.);

I Investigating further POMDP problems with multiple objectives.

I Modelling and analysing diagnosis with stochastic games.
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