Probabilistic Aspects of Computer Science: CTMC

Serge Haddad

LMF, ENS Paris-Saclay & CNRS

MPRI M1

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 1/34

- Mathematical Background
- 2 Renewal Processes with Non Arithmetic Distribution
- 3 Continuous Time Markov Chains (CTMC)
- 4 Finite CTMC

Plan

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 2/34

Renewal Processes with Non Arithmetic Distribution

Continuous Time Markov Chains (CTMC)

Finite CTMC

Integration background

Using Caratheodory extension theorem, a *locally finite measure* μ_F on \mathbb{R}^+ is uniquely defined by a function F such that:

- ► *F* is non negative, non decreasing, right-continuous;
- $F(x) \stackrel{\text{def}}{=} \mu_F([0, x]).$

There are other kinds of measures like singular distributions (see Cantor distribution).

Integration background

The integral of a non negative measurable function h w.r.t. F is defined by:

$$\int_0^\infty h(x)F\{dx\} \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{k \in \mathbb{N}} \frac{k}{n} \mu_F\left(h^{-1}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right[\right]\right)\right)$$

Riemann: *x*-decomposition and framing **Lebesgue:** *y*-decomposition and lower bounding

4 ロト 4 日 ト 4 日 ト 4 日 ト 日 の 4 (3 4)

1-Approximation: $F(x_2) - F(x_1) + F(x_4) - F(x_3) + 2(F(x_3) - F(x_2))$ When F is defined by $F(x) \stackrel{\text{def}}{=} \int_0^x f(\tau) d\tau + \sum_{x_i \leq x} m_i$ where:

- x_1, x_2, \ldots is a sequence of points with mass m_1, m_2, \ldots ;
- ► *f* is a non negative (measurable) density function.

Then:

$$\int_0^\infty h(x)F\{dx\} = \int_0^\infty h(x)f(x)dx + \sum_{i\in\mathbb{N}} h(x_i)m_i$$

Probability background

When $\lim_{x\to\infty} F(x) = 1$ (resp. ≤ 1) F is called a (resp. *defective*) *distribution*. X, a random variable on $\mathbb{R}^+ \cup \{\infty\}$, has a distribution function F if:

 $\mathbf{Pr}(X \leq x) = F(x)$ (with $\mathbf{Pr}(X = \infty) = 1 - \lim_{x \to \infty} F(x)$)

Let h be a non negative measurable function. The expectation of h(X) is defined by:

$$\mathbf{E}(h(X)) \stackrel{\text{def}}{=} \int_0^\infty h(x) F\{dx\} = \lim_{n \to \infty} \sum_{k \in \mathbb{N}} \frac{k}{n} \mathbf{Pr}\left(h(X) \in \left[\frac{k}{n}, \frac{k+1}{n}\right[\;\right)$$

Let X (resp. Y) be a non negative random variable with distribution F (resp. G). Assume X and Y are independent.

The distribution of X + Y is defined by the convolution $F \star G$:

$$F \star G(x) = \int_0^x F(x-y)G\{dy\} = \int_0^x G(x-y)F\{dy\}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 5/34

The exponential distribution

Let F be defined by: $F(\tau) = 1 - e^{-\lambda \tau}$

Then F is the exponential distribution with rate $\lambda > 0$.

The exponential distribution is memoryless.

Let X be a random variable with a λ -exponential distribution.

$$\mathbf{Pr}(X > \tau' \mid X > \tau) = \frac{\mathbf{Pr}(X > \tau')}{\mathbf{Pr}(X > \tau)} = \frac{e^{-\lambda \tau'}}{e^{-\lambda \tau}} = e^{-\lambda(\tau' - \tau)} = \mathbf{Pr}(X > \tau' - \tau)$$

The minimum of exponential distributions is an exponential distribution. Let Y be independent from X with μ -exponential distribution.

$$\mathbf{Pr}(\min(X,Y) > \tau) = e^{-\lambda\tau}e^{-\mu\tau} = e^{-(\lambda+\mu)\tau}$$

The minimal variable is selected proportionally to its rate.

$$\mathbf{Pr}(X < Y) = \int_0^\infty \mathbf{Pr}(Y > \tau) F_X\{d\tau\} = \int_0^\infty e^{-\mu\tau} \lambda e^{-\lambda\tau} d\tau = \frac{\lambda}{\lambda + \mu}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 6/34

Convoluting the exponential distribution

The n^{th} convolution of a distribution F is defined by:

$$F^{n\star} \stackrel{\text{def}}{=} F \star \dots \star F \qquad (n \text{ times})$$

Let f_n (resp. F_n) be the density (resp. distribution) of the n^{th} convolution of the λ -exponential distribution. Then:

$$f_n(x) = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} \text{ and } F_n(x) = 1 - e^{-\lambda x} \sum_{0 \le m < n} \frac{(\lambda x)^m}{m!}$$

Sketch of proof

Recall that: $f_1(x) = \lambda e^{-\lambda x}$.

$$f_{n+1}(x) = \int_0^x f_n(x-u) f_1(u) du = \int_0^x \lambda e^{-\lambda(x-u)} \frac{(\lambda(x-u))^{n-1}}{(n-1)!} \lambda e^{-\lambda u} du$$
$$= \lambda e^{-\lambda x} \int_0^x \lambda \frac{(\lambda(x-u))^{n-1}}{(n-1)!} du = \lambda e^{-\lambda x} \frac{(\lambda x)^n}{n!}$$

Deduce F_{n+1} by:

$$\frac{d}{dx} \left(1 - e^{-\lambda x} \sum_{0 \le m \le n} \frac{(\lambda x)^m}{m!} \right) = e^{-\lambda x} \left(\lambda \sum_{0 \le m \le n} \frac{(\lambda x)^m}{m!} - \sum_{0 \le m \le n-1} \lambda \frac{(\lambda x)^m}{m!} \right) = f_{n+1}(x)$$

Plan

▲□▶▲舂▶▲≧▶▲≧▶ 볼 の�� 8/34

Mathematical Background

2 Renewal Processes with Non Arithmetic Distribution

Continuous Time Markov Chains (CTMC)

Finite CTMC

Renewal process: definition

A renewal process is a very simple case of DES.

- It has a single state.
- The time intervals between events are reals obtained by sampling i.i.d. (independent and identically distributed) random variables with distribution F such that F(0) = 0.
- ▶ *Renewal instants* are the instants corresponding to the occurrence of events.

F is *arithmetic* if there exists $\alpha \in \mathbb{R}^+$ such that the probability mass is concentrated on the set $\{k\alpha \mid k \in \mathbb{N}\}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 9/34

Measure of renewal instants

The n^{th} renewal instant distribution is F convoluted n-1 times with itself: $F^{n\star}$ By convention $F^{0\star}(0) = 1$ (the Dirac distribution concentrated in 0)

The measure associated with renewal instants is $U \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} F^{n\star}$. For instance U(b) - U(a) is the mean number of renewal instants in [a, b].

U is (locally) finite. More precisely for all $h \ge 0$, there exists C_h such that $U\{I\} \le C_h$ for all intervals I with length h.

▲□▶▲□▶▲三▶▲三▶ 三 のへで 10/34

Rewards for renewal processes

Let $z(\tau)$ be a (non increasing) function specifying the value of a renewal instant that occurred τ time units before (e.g. $\mathbf{1}_{\tau < \delta}$, $e^{-\tau}$, etc.).

Let Z(x) be the cumulated discounted (w.r.t. z) value of renewal instants that occur up to x.

Then Z fulfills a renewal equation. (and it is the single solution bounded on bounded intervals)

$$Z(x) = z(x) + \int_0^x Z(x-y)F\{dy\}$$
 (1)

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 11/34

Z can also be expressed by:

$$Z(x) = U \star z(x) \stackrel{\mathsf{def}}{=} \int_0^x z(x-y) U\{dy\}$$

Renewal theorems

Let F be a non arithmetic distribution with (finite or infinite) expectation μ . Then:

$$\lim_{t \to \infty} U(t) - U(t-h) = \frac{h}{\mu} \text{ for all } h > 0$$

Let F be a non arithmetic distribution with (finite or infinite) expectation μ and z be a non increasing integrable function. Then:

$$\lim_{x \to \infty} Z(x) = \frac{1}{\mu} \int_0^\infty z(y) dy$$

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへで 12/34

Interpretation and informal justification

When x is large, there is approximatively one renewal instant uniformly distributed per interval $[x-i\mu,x-(i+1)\mu].$

$$Z(x) \approx \frac{1}{\mu} \int_0^\mu z(y) dy + \frac{1}{\mu} \int_\mu^{2\mu} z(y) dy + \cdots$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 • つへで 13/34

Generalizations

Instantaneous renewal process: 0

- Choose a number of renewals at the same instant with a Bernoulli law whose parameter is p.
- ► Choose the next renewal instant with distribution G defined by $G(0) \stackrel{\text{def}}{=} 0$ and $G(x) \stackrel{\text{def}}{=} (1-p)^{-1}(F(x)-p)$ for x > 0. Let $V \stackrel{\text{def}}{=} \sum_{i \in \mathbb{N}} G^{i\star}$. Then $U = (1-p)^{-1}V$.

Delayed renewal process: The first renewal instant follows a distribution G. The mean number of renewal instants is given by $V \stackrel{\text{def}}{=} G \star U$. Then:

$$\lim_{t\to\infty}V(t)-V(t-h)=\frac{h}{\mu} \text{ for all } h>0$$

Let z be a non increasing function such that $Z \stackrel{\text{def}}{=} U \star z$ is bounded. Then:

$$\lim_{x \to \infty} (G \star Z)(x) = \frac{1}{\mu} \int_0^\infty z(y) dy$$

Plan

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - の Q (2) 15/34

Mathematical Background

Renewal Processes with Non Arithmetic Distribution

3 Continuous Time Markov Chains (CTMC)

Finite CTMC

Continous time Markov chains (CTMC)

A CTMC is a stochastic process which fulfills:

▶ The time interval between events T_n is a random variable whose distribution is the exponential one and whose rate only depends on state S_n .

$$\mathbf{Pr}(T_n \le \tau \mid S_0 = s_{i_0}, ..., S_n = s_i, T_0 \le \tau_0, ..., T_{n-1} \le \tau_{n-1}) =$$
$$\mathbf{Pr}(T_n \le \tau \mid S_n = s_i) \stackrel{\text{def}}{=} 1 - e^{-\lambda_i \cdot \tau}$$

The selection of the state that follows the current state only depends on that state and the transition probabilities remain constant along the run:

$$\mathbf{Pr}(S_{n+1} = s_j \mid S_0 = s_{i_0}, ..., S_n = s_i, T_0 \le \tau_0, ..., T_n \le \tau_n) =$$

$$\mathbf{Pr}(S_{n+1} = s_j \mid S_n = s_i) \stackrel{\mathsf{def}}{=} p_{ij} \stackrel{\mathsf{def}}{=} \mathbf{P}[i, j]$$

- ${\bf P}$ is called the *embedded* DTMC.
- A CTMC is said *irreducible* if the embedded DTMC is irreducible.

Representation and illustration

Graph representation of a CTMC

- The set of vertices is the set of the states of the CTMC;
- There is an edge from s_i to s_j labelled by $\lambda_i p_{ij}$ if $p_{ij} > 0$ and $s_i \neq s_j$.

A single-server queue

More illustrations

An infinite-server queue

A tandem queue

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ 18/34

Transient behaviour

Let $\pi_{ij}(\tau) \stackrel{\text{def}}{=} \mathbf{Pr}(X(\tau) = j \mid X(0) = i)$ be the probability that the state is j at time τ knowing that at time 0 the state is i.

 $\sum_{j \in S} \pi_{ij}(\tau) \leq 1$ but equality can be falsified.

$$\bigcirc \xrightarrow{1} (1) \xrightarrow{2} (2) \xrightarrow{4} (3) \xrightarrow{8} \cdots$$

$$\mathbf{E}(\sum_{n=0}^{\infty} T_n) = \sum_{n=0}^{\infty} \mathbf{E}(T_n) = 2$$

which implies $\Pr(\sum_{n=0}^{\infty} T_n \text{ is finite}) = 1$

which implies
$$\lim_{\tau \to \infty} \sum_{i \in S} \pi_{0i}(\tau) = 0$$

Right-continuity of the transient distribution

By the memoryless property: $\pi_{ij}(\Delta + \tau) = \sum_k \pi_{ik}(\Delta)\pi_{kj}(\tau)$

For all $i \neq j$, $\lim_{\tau \downarrow 0} \pi_{ii}(\tau) = 1$ and $\lim_{\tau \downarrow 0} \pi_{ij}(\tau) = 0$;

• For all i, j, π_{ij} is right-continuous and so measurable.

Sketch of proof

 $\pi_{ii}(\tau) \geq e^{-\lambda_i \tau}$ implies $\lim_{\tau \downarrow 0} \pi_{ii}(\tau) = 1$

 $\pi_{ii}(\tau) + \pi_{ij}(\tau) \le 1 \text{ implies } \lim_{\tau \downarrow 0} \pi_{ij}(\tau) = 0$

 $\pi_{ij}(\tau + d\tau) = \sum_{k} \pi_{ik}(\tau) \pi_{kj}(d\tau) \text{ implies (using dct)}$ $\lim_{d\tau \downarrow 0} \pi_{ij}(\tau + d\tau) = \sum_{k} \pi_{ik}(\tau) \lim_{d\tau \downarrow 0} \pi_{kj}(d\tau) = \pi_{ij}(\tau)$

Backward differential equations

The *infinitesimal generator* of a CTMC, \mathbf{Q} , is defined by:

- $q_{ij} \stackrel{\text{def}}{=} \lambda_i \cdot p_{ij}$ for $i \neq j$
- $q_{ii} \stackrel{\text{def}}{=} (p_{ii} 1)\lambda_i = -\sum_{j \neq i} q_{ij}$

The backward differential equation system

The family of functions $\{\pi_{ij}\}$ is differentiable and fulfills:

$$\frac{d\pi_{ij}(\tau)}{d\tau} = \sum_{k} q_{ik} \pi_{kj}(\tau)$$

Let matrix Π be defined by $\Pi[i, j] \stackrel{\text{def}}{=} \pi_{ij}$, the previous equation can be rewritten:

$$\frac{d\Pi}{d\tau} = \mathbf{Q} \cdot \Pi \tag{2}$$

◆□▶ ◆ @ ▶ ◆ 夏 ▶ ◆ 夏 ◆ ○ Q ℃ 21/34

Proof of backward differential equations

A renewal equation based on the (possible) occurrence of the first event in $[0, \tau]$:

$$\pi_{ij}(\tau) = \mathbf{1}_{i=j}e^{-\lambda_i\tau} + \sum_k \int_0^{\tau} e^{-\lambda_i(\tau-x)}\lambda_i p_{ik}\pi_{kj}(x)dx$$
$$= e^{-\lambda_i\tau} \left(\mathbf{1}_{i=j} + \sum_k \lambda_i p_{ik} \int_0^{\tau} e^{\lambda_i x}\pi_{kj}(x)dx\right)$$

Every integral is a continuous function of τ .

The infinite sum of functions is normally convergent.

So the infinite sum is continuous implying the continuity of π_{ij} . Every integral is differentiable and its derivative is equal to $e^{\lambda_i \tau} \pi_{kj}(\tau)$.

Due to the normal convergence of the sum of derivatives, the infinite sum is differentiable implying the differentiability of π_{ij} .

Let us compute the derivative of π_{ij} :

$$\frac{d\pi_{ij}(\tau)}{d\tau} = e^{-\lambda_i \tau} \left(\sum_k \lambda_i p_{ik} e^{\lambda_i \tau} \pi_{kj}(\tau) \right) - \lambda_i \pi_{ij}(\tau) = \sum_k q_{ik} \pi_{kj}(\tau)$$

Forward differential equations

The forward differential equation system

Assume that $\sup(\lambda_i \mid i \in S)$ is finite. The family of functions $\{\pi_{ij}\}$ fulfills: $\frac{d\pi_{ij}(\tau)}{d\tau} = \sum_k \pi_{ik}(\tau)q_{kj}$ which can be rewritten: $\frac{d\Pi}{d\tau} = \Pi \cdot \mathbf{Q}$ (3)

◆□▶◆舂▶◆≧▶◆≧▶ ≧ のへぐ 23/34

Classification of states

As in a DTMC, a state of a CTMC may be:

- transient,
- null recurrent,
- or *positive recurrent* (equivalent to *ergodic*).

The transient and the recurrent characters only depend on the embedded DTMC.

In an irreducible CTMC, all states have same status. (immediate for the transient character, proved later for positive/null recurrence)

Characterization of positive recurrence

Let i be a recurrent state and D_i be the mean time between two visits of i.

Then:
$$\lim_{ au
ightarrow \infty} \pi_{ii}(au) = rac{1}{\lambda_i D_i}$$

Thus *i* is positive recurrent iff $\lim_{\tau\to\infty} \pi_{ii}(\tau) > 0$.

Sketch of proof

Let $z_i(\tau)$ be the (non increasing) probability to stay in *i* during at least τ time units: $z_i(\tau) \stackrel{\text{def}}{=} e^{-\lambda_i \tau}$.

 $\pi_{ii}(\tau)$ fulfills the renewal equation.

$$\pi_{ii}(\tau) = z_i(\tau) + \int_0^\tau \pi_{ii}(\tau - y) F\{dy\}$$

where F is the (non arithmetic) distribution of the return time to i. Using renewal theorem:

$$\lim_{\tau \to \infty} \pi_{ii}(\tau) = \frac{1}{D_i} \int_0^\infty e^{-\lambda_i \tau} d\tau = \frac{1}{\lambda_i D_i}$$

Positive recurrence and irreducible CTMC

Let i, j be two states of an irreducible recurrent CTMC. Then i is positive recurrent iff j is positive recurrent.

◆□▶◆舂▶◆葦▶◆葦▶ 葦 の�? 26/34

Sketch of proof

- Assume that i is positive recurrent.
- There is a path from j to i and vice versa.
- So given an arbitrary $\delta > 0$, $\pi_{ji}(\delta) > 0$ and $\pi_{ij}(\delta) > 0$.
- Observe that: $\pi_{jj}(\tau + 2\delta) \ge \pi_{ji}(\delta)\pi_{ii}(\tau)\pi_{ij}(\delta)$.
- Which implies: $\lim_{\tau \to \infty} \pi_{jj}(\tau + 2\delta) > 0$.
- So j is positive recurrent.

Second characterization of positive recurrence

Let C be a *recurrent* irreducible CTMC. Then C is positive recurrent iff: there exists \mathbf{u} such that $\mathbf{u} \cdot \mathbf{Q} = 0$ with for all i, $\mathbf{u}_i > 0$ and $\sum_{i \in S} \mathbf{u}_i = 1$. In that case, $\mathbf{u}_i = \frac{1}{\lambda_i D_i}$

Preliminary observations

- Given states r, s, there exists $\rho > 0$ such that for all $i, r \pi_{ri} = \rho \cdot {}_s \pi_{si}$
- $D_r = \sum_i \frac{r \pi_{ri}}{\lambda_i}$ (by linearity of expectations and monotone convergence theorem)
- Let vectors \mathbf{u}, \mathbf{v} fulfill for all $i, \mathbf{v}_i = \mathbf{u}_i \lambda_i$. Then $\mathbf{u} \cdot \mathbf{Q} = 0$ iff $\mathbf{v} \cdot \mathbf{P} = \mathbf{v}$

Sufficiency. Assume for all *i*, $\mathbf{u}_i > 0$, $\mathbf{u} \cdot \mathbf{Q} = 0$, and $\sum_{i \in S} \mathbf{u}_i = 1$ Then: $\mathbf{v}_i > 0$, $\mathbf{v} \cdot \mathbf{P} = \mathbf{v}$ So using recurrence of the embedded DTMC, $\exists \alpha > 0 \ \forall i \ \mathbf{v}_i = \alpha \cdot r \pi_{ri}$ $\sum_{i \in S} \mathbf{u}_i = \sum_{i \in S} \frac{\alpha \cdot r \pi_{ri}}{\lambda_i} = \alpha D_r$ implying $D_r < \infty$.

Necessity. Assume for all i, $D_i < \infty$. Pick some state r.

 $({}_{r}\pi_{ri})_{i\in S}$ and $({}_{s}\pi_{si})_{i\in S}$ are proportional. So $\frac{r\pi_{ri}}{D_{r}} = \frac{s\pi_{si}}{D_{s}}$ and $\frac{r\pi_{ri}}{D_{r}} = \frac{i\pi_{ii}}{D_{i}} = \frac{1}{D_{i}}$ Let $\mathbf{u}_{i} \stackrel{\text{def}}{=} \frac{1}{\lambda_{i}D_{i}} = \frac{r\pi_{ri}}{\lambda_{i}D_{r}}$. So $\mathbf{u} \cdot \mathbf{Q} = 0$. Moreover $\sum_{i} \frac{1}{D_{i}\lambda_{i}} = \sum_{i} \frac{r\pi_{ri}}{D_{r}\lambda_{i}} = 1$.

Third characterization of positive recurrence

Let C be an irreducible CTMC such that $\sup(\lambda_s \mid s \in S) < \infty$. Then C is positive recurrent iff there exists \mathbf{u} such that $\mathbf{u} \cdot \mathbf{Q} = 0$ with for all i, $\mathbf{u}_i > 0$ and $\sum_{i \in S} \mathbf{u}_i < \infty$.

Sketch of proof

The necessity is proved by the second characterization.

- Let **u** be such that $\mathbf{u} \cdot \mathbf{Q} = 0$ for all i, $\mathbf{u}_i > 0$ and $\sum_{i \in S} \mathbf{u}_i$ is finite.
- Let $\mathbf{v}_i \stackrel{\text{def}}{=} \mathbf{u}_i \lambda_i$.
- Then $\mathbf{v} \cdot \mathbf{P} = \mathbf{v}$ and $\sum_{i \in S} \mathbf{v}_i \leq \sup_i (\lambda_i) \sum_{i \in S} \mathbf{u}_i$ is finite.

So the embedded DTMC is (positive) recurrent implying the recurrence of the C. Applying the second characterization, C is positive recurrent.

Summary of the characterizations

Status	Characterization
Recurrent	The embedded DTMC is recurrent.
Positive Recurrent	(1) The embedded DTMC is recurrent (implied by (2) when $\sup(\lambda_i \mid i \in S) < \infty$) and (2) $\exists \mathbf{u} > 0 \ \mathbf{u} \cdot \mathbf{Q} = 0 \land \sum_{i \in S} \mathbf{u}_i = 1$ (\mathbf{u} is the steady-state distribution)

Analysis of an infinite-server queue

Recurrence versus Transience

$$x_1 = rac{\lambda}{\mu + \lambda} x_2$$
 and $orall i \geq 2$ $x_i = rac{\lambda}{i\mu + \lambda} x_{i+1} + rac{i\mu}{i\mu + \lambda} x_{i-1}$

It can be rewritten as:

$$x_1=\frac{\lambda}{\mu+\lambda}x_2 \text{ and } \forall i\geq 2 \ x_{i+1}-x_i=\frac{i\mu}{\lambda}(x_i-x_{i-1})$$
 By induction:

 $\forall i \ge 1 \ x_{i+1} - x_i > 0 \text{ and } \forall i \ge i_0 \stackrel{\mathsf{def}}{=} \left\lceil \frac{\lambda}{\mu} \right\rceil \ x_{i+1} - x_i \ge x_i - x_{i-1}$

Thus $\forall i \geq i_0 \ x_i \geq (i - i_0)(x_{i_0} - x_{i_0-1})$ implying that the x_i 's are unbounded.

So the CTMC is recurrent.

Analysis of an infinite-server queue

Positive versus Null Recurrence

Global Balance Equation:

 $\lambda x_0 = \mu x_1$ and $\forall i \ge 1$ $\lambda x_i + i\mu x_i = (i+1)\mu x_{i+1} + \lambda x_{i-1}$

Local Balance Equation (by induction):

 $\forall i \ge 0 \ \lambda x_i = (i+1)\mu x_{i+1}$

Let $\rho \stackrel{\text{def}}{=} \frac{\lambda}{\mu}$. For $i \ge 0$, $x_i = x_0 \frac{\rho^i}{i!}$

Thus the CTMC is positive recurrent and $\pi_{\infty}(i) = e^{-\rho} \frac{\rho^i}{i!}$

Plan

Mathematical Background

Renewal Processes with Non Arithmetic Distribution

Continuous Time Markov Chains (CTMC)

Uniformization

A uniform version of the CTMC (equivalent w.r.t. the states)

Transient analysis

Principle

- Construction of a uniform version of the CTMC (λ, \mathbf{P})
- Computation by case decomposition w.r.t. the number of transitions:

 $\pi(\tau) = \pi(0) \sum_{n \in \mathbb{N}} \mathbf{Pr}(n \text{ transitions in } [0, \tau]) \mathbf{P}^n = \pi(0) \sum_{n \in \mathbb{N}} \frac{(\lambda \tau)^n}{n!} e^{-\lambda \tau} \mathbf{P}^n$

Sketch of proof

Let F_n be the distribution of the n^{th} convolution of the λ -exponential distribution.

$$F_n(x) = 1 - e^{-\lambda x} \sum_{0 \le m < n} \frac{(\lambda x)^m}{m!}$$

So $\mathbf{Pr}(n \text{ transitions in } [0, \tau]) = F_n(\tau) - F_{n+1}(\tau) = \frac{(\lambda \tau)^n}{n!} e^{-\lambda \tau}$