
1/90

Complexity

Serge Haddad

LSV, ENS Cachan & CNRS & INRIA, Université Paris-Saclay

L3, ENS Cachan

1 Introduction

2 NP

3 PSPACE

4 PTIME

5 NLOGSPACE

6 Strict inclusions between classes

2/90

Plan

1 Introduction

NP

PSPACE

PTIME

NLOGSPACE

Strict inclusions between classes

3/90

Problems and Instances

I A problem P is a mapping from A to B.

I An instance is an item of A.

I When B = {true, false}, P is a decision problem.

Example: a graph G = (V,E) and two vertices s, t ∈ V .

I What is the length of a shortest path from s to t (possibly ∞)?

I Does there exist a path from s to t?

Here we focus on decision problems.

4/90

Data Representation

A problem also defines the representation of instances and results.

Usually reasonnable representations should lead to same complexity measures.

Let G = (V,E) be a graph with n = |V | and m = |E|.
Two possible representations:

I first the number n and then the pairs of vertices in E.
A size ≈ (2m+ 1) log(n+ 1) bits;

I first the number n and then the adjacency matrix.
A size ≈ n2 + log(n+ 1) bits.

The special case of integers:

I n in binary with size ≈ log(n+ 1);

I n in unary with size ≈ n.

Unary representation is used to determine whether the complexity of the problem
comes from the numbers.

5/90

Complexity Measures

Time and Space.

Should be insensitive to scale change (so O(),Ω(),Θ()).

For space complexity, the size of the instance is not taken into account.

The choice of the computing device is relevant (contrary to the Church’s thesis).

Example: A search in a sorted array of size n.

I in O(log(n)) with direct access to memory;

I in O(n) with sequential access (like Turing machine);

6/90

Establishing Complexity Bounds

Upper Bounds: Provide an algorithm and analyze its complexity.

Lower Bounds: Reduce an already studied problem to the current problem.

Bootstrapping in complexity: How to establish a lower bound for the first problem?

7/90

Two Kinds of Turing Machines

Deterministic Turing machines, DTM (as seen in Computability lectures)

I An input tape (i.e. no write);

I Some working tapes;

I For general problems, a stopping state and an output tape (i.e. no read);

I For decision problems, two absorbing states: accept and reject;

I Time complexity is the length of the run and space complexity is the maximal
position of a head of the working tapes along the run.

Non deterministic Turing machines, NTM (only for decision problems)

I A non deterministic transition function δ : Q× Σ→ 2Q×Σ×Move;

I Several runs for a word;

I An existential semantic: the machine accepts if there is an accepting run;

I Time and space complexities are maximum values over the runs.

8/90

Measure Functions

f a non decreasing function from N to N is a measure function if:

I There is a Turing machine computing f(n),

I operating in time O(f(n) + n),

I and space O(f(n)).

A problem P belongs to:

I TIME(f) (resp. NTIME(f)) if there exists n0 and a DTM (resp. NTM)
deciding P and operating in time at most f(n) for all instance of size n ≥ n0.

I SPACE(f) (resp. NSPACE(f)) if there exists n0 and a DTM (resp. NTM)
deciding P and operating in time at most f(n) for all instance of size n ≥ n0.

So it is a worst case and asymptotic complexity.

9/90

Some Inclusions (1)

Determinism versus Non Determinism:

I TIME(f) ⊆ NTIME(f)

I SPACE(f) ⊆ NSPACE(f)

Time versus Space:

I TIME(f) ⊆ SPACE(f)

I NTIME(f) ⊆ NSPACE(f)

Accelerations: For all k > 0,

I SPACE(kf) ⊆ SPACE(f)

I NSPACE(kf) ⊆ NSPACE(f)

In exercises, similar results for time.

10/90

Some Inclusions (2)

A first simulation: NTIME(f) ⊆ SPACE(f)

I Let n be the size of the instance, compute f(n) (in space O(f(n));

I Check the acceptance of all the possible runs using an array of f(n) choices
(in space O(f(n)) but in time O(kf(n)) for some k).

A second simulation: NSPACE(f) ⊆
⋃
i∈N TIME(if+log)

Given an instance w of size n and an NTM M,
the configuration graph GM,w is defined by:

I Vertices are configurations with working tapes of size f(n);

I There is an edge from c to c′ if there is a step of M from c to c′.

The deterministic machine:

I computes the configuration graph in time O(if+log) for some i;

I checks the reachability of an accepting configuration from the initial
configuration in linear time w.r.t. the size of the graph.

11/90

Standard Classes

Let n be the size of the instance.

LOGSPACE ≡ SPACE(log(n))

NLOGSPACE ≡ NSPACE(log(n))

P ≡ PTIME ≡
⋃
k∈N TIME(nk)

NP ≡ NPTIME ≡
⋃
k∈N NTIME(nk)

PSPACE ≡
⋃
k∈N SPACE(nk)

NPSPACE ≡
⋃
k∈N NSPACE(nk)

and beyond (see the M1 course on Advanced Complexity) ...

Let P be a decision problem. Then ¬P is the complementary problem.

Given a class C, coC is defined by coC ≡ {¬P | P ∈ C}.

12/90

Relation between Classes

LOGSPACE

NLOGSPACE

coNLOGSPACE

PTIME

NP

coNP

PSPACE NPSPACE

6=

=

Savitch theorem

Immerman-Szelepscényi theorem

A strict inclusion theorem

13/90

Reductions

Let P, P ′ be decision problems ranging over A (resp. A′).

A PTIME (resp. LOGSPACE) reduction r is a mapping from A to A′ such that:

I For all a ∈ P , P ′(r(a)) = P (a);

I There exists an algorithm implementing r and operating in PTIME (resp.
LOGSPACE).

Composition of reductions: Let P ′′ ranging over A′′.

I If r (resp. r′) is PTIME reduction from P (resp. P ′) to P ′ (resp. P ′′) then
r′ ◦ r is a PTIME reduction from P to P ′′;
Execute the second algorithm on the output of the first algorithm.

I If r (resp. r′) is LOGSPACE reduction from P (resp. P ′) to P ′ (resp. P ′′)
then r′ ◦ r is a LOGSPACE reduction from P to P ′′;
See the exercices.

14/90

Hard and Complete Problems

Let C be a complexity class. Then:

I P is a C-hard problem if for all P ′ ∈ C there is a D-reduction with D ≺ C.
(≺ means that D is supposed to be strictly included in C)

I P is a C-complete problem if P belongs to C and is C-hard.

Example: Use PTIME-reduction for NP and LOGSPACE-reduction for PTIME.

How to establish C-hardness for P?

I Either reduce P ′, a C-complete problem, to P .

I Or pick an accepting TM M belonging to C and exhibit an algorithm that:

1. depends on M and C.
2. takes a word w as input.
3. outputs aw ∈ P such that P (aw) iff M accepts w.
4. operates in the appropriate class D.

15/90

Plan

Introduction

2 NP

PSPACE

PTIME

NLOGSPACE

Strict inclusions between classes

16/90

Propositional Logic
A formula of propositional logic ϕ is inductively defined by:

I ϕ may be true, false or an atomic proposition in a countable set Prop;

I ϕ = ¬ϕ1, ϕ = ϕ1 ∨ ϕ2, ϕ = ϕ1 ∧ ϕ2 where ϕ1, ϕ2 are formulas.

An interpretation ν is a mapping from Prop to {true, false}.

Let ν be an interpretation. Then ν may be extended to formulas as follows.

I ν(¬ϕ1) = ¬(ν(ϕ1));

I ν(ϕ1 ∨ ϕ2) = ∨(ν(ϕ1), ν(ϕ2));

I ν(ϕ1 ∧ ϕ2) = ∧(ν(ϕ1), ν(ϕ2)).

Here ¬ (resp. ∨, ∧) is the function from {true, false} (resp. {true, false}2) to
{true, false} corresponding to the operator ¬ (resp. ∨, ∧).

Other operators are abbreviations:

I ϕ⇒ ψ ≡ (¬ϕ) ∨ ψ;

I ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ);

I etc.

17/90

The Satisfiability Problem

Let ϕ be a formula and ν be an interpretation.

If ν(ϕ) = true, one says that ν satisfies ϕ, denoted by ν |= ϕ.

Given a formula ϕ as input, the satisfiability problem asks
whether there exists an interpretation ν such that ν |= ϕ.

The satisfiability problem belongs to NP:

I Let p1, . . . , pn be the propositions occurring in ϕ,
guess in linear time ν(p1), . . . , ν(pn);

I Evaluate in linear time ν(ϕ) by a recursive function
implementing the definition of ν(ϕ).

18/90

Satisfiability is NP-hard (1)
Let M be a NTM operating in polynomial time p(n) where n is the size of the
input w.

We code a configuration at time j ≤ p(n) by the following propositions:

I For all q ∈ Q, qj is true if the state is q;

I For all 0 ≤ i ≤ p(n), ij is true if the position of the head is i;

I For all 0 ≤ i ≤ p(n), a ∈ Σ, aji is true if the ith cell contains a.

We denote sj the set of these propositions.

Given a configuration c of M operating on w, νjc is the interpretation of sj

corresponding to c.

The formula ϕM,w is a conjunction of subformulas among them for all j ≤ p(n):

I
∨
q∈Q q

j and for all q 6= q′ ∈ Q, ¬qj ∨ ¬(q′)j ;

I
∨
i≤p(n) i

j and for all i < i′ ≤ p(n), ¬ij ∨ ¬(i′)j ;

I for all i ≤ p(n),
∨
a∈Σ a

j
i and for all a 6= a′ ∈ Σ, ¬aji ∨ ¬(a′)ji .

These subformulas ensure that, given an interpretation ν |= ϕM,w,

for all j, there is a single configuration cjν such that ν(sj) = νcjν (sj).

19/90

Satisfiability is NP-hard (2)
The following subformulas are related to initial and final configurations:

qinit0, 10, $0, w[1]01, . . . , w[n]0n, [0n+1, . . . , [
0
p(n), qaccp(n).

These subformulas ensure that, given an interpretation ν |= ϕM,w,

c0
ν is the initial configuration and c

p(n)
ν is an accepting configuration.

Let δ(q, a) = {(nq1(q, a), na1(q, a), dp1(q, a)), . . . , (nqK(q, a), naK(q, a), dpK(q, a))}.

The following subformulas are related to the steps of M
for all j < p(n), i ≤ p(n), a ∈ Σ:

I (¬ij)⇒ (aji ⇔ aj+1
i);

I for all q ∈ Q, (qj ∧ ij ∧ aji) ⇒
∨

k≤K nqk(q, a)
j+1 ∧ (i+ dpk(q, a))

j+1 ∧ nak(q, a)j+1
i

with a conjunctive clause of the conclusion substituted by false
when i+ dpk(q, a) /∈ [0, p(n)].

These subformulas ensure that, given an interpretation ν |= ϕM,w,
for all j < p(n), cjν →M cj+1

ν .

• Thus if ν |= ϕM,w then c0
ν , . . . , c

p(n)
ν is an accepting run for w.

• Conversely assume c0, . . . , cp(n) is an accepting run.

Then ν, defined by for all j ν(sj) = νcj (s
j), satisfies ϕ.

20/90

Formulas in CNF
A formula ϕ is in conjunctive normal form (CNF) if:

I ϕ =
∧
i≤m ψi where every ψi is a clause;

I A clause ψi =
∨
j≤ni θi,j where every θi,j is a literal;

I A literal is either some p or ¬p where p is a proposition.

ϕ and ψ are equivalent if for all ν, ν(ϕ) = ν(ψ).

For all formula, one can build an equivalent CNF formula as follows.

I Push the negations in front of the propositions:
I ¬¬ϕ ≡ ϕ;
I ¬(ϕ1 ∨ ϕ2) ≡ (¬ϕ1) ∧ (¬ϕ2);
I ¬(ϕ1 ∧ ϕ2) ≡ (¬ϕ1) ∨ (¬ϕ2).

I Push the disjunctions below the conjunctions:
(ϕ1 ∧ ϕ2) ∨ ϕ3 ≡ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3).

However this is an exponential time procedure and this blowup is unavoidable.

21/90

3SAT is NP-complete (1)
Let ϕ be CNF formula where all clause has at most 3 literals. Then 3SAT asks
whether ϕ is satisfiable.

Let ϕ be an arbitrary formula, one builds in PTIME a 3CNF formula ψ as follows.

I For all occurrence of an operator, add a new proposition and label the node of
the syntactical tree by this proposition;

I The clauses of ψ are defined as follows. The proposition labelling the root is a
clause and for all inner node of the tree:

I If it is a negation labelled by x and y labels its son,
then ¬x ∨ ¬y and x ∨ y are clauses;

I If it is a conjunction labelled by x and y, z label its sons,
then x ∨ ¬y ∨ ¬z and ¬x ∨ y, ¬x ∨ z are clauses;

I If it is a disjunction labelled by x and y, z label its sons,
then ¬x ∨ y ∨ z and x ∨ ¬y, x ∨ ¬z are clauses.

ϕ = (¬(p∧q))∨r

ψ = xv ∧ (¬xv ∨ xn ∨ r) ∧ (xv ∨ ¬xn) ∧ (xv ∨ ¬r)
∧ (¬xn ∨ ¬xw) ∧ (xn ∨ xw) ∧

(xw ∨ ¬p ∨ ¬q) ∧ (¬xw ∨ p) ∧ (¬xw ∨ q)

22/90

3SAT is NP-complete (2)

ϕ is satisfiable if and only if ψ is satisfiable.

Proof.

• Assume ν |= ϕ.

Let ν′ extending ν on the new propositions as follows.

Let x be a proposition corresponding to an inner node with subformula ϕx.

Then choose ν′(x) = ν(ϕx).

It is routine to check that ν′ |= ψ.

• Assume ν |= ψ.

By induction on the size of subformulas, one proves that ν(x) = ν(ϕx).

Considering the clause x where x labels the root, one gets ν(ϕ) = true.

23/90

The Hamiltonian Circuit Problem (1)

Let G = (V,E) be a directed graph with V = {v0, . . . , vn−1}.

A Hamiltonian circuit is a permutation σ of {0, . . . , n− 1} such that:
for all 0 ≤ i < n, (vσ(i), vσ(i+1%n)) ∈ E

The Hamiltonian circuit problem asks whether a Hamiltonian circuit exists.

The Hamiltonian circuit problem belongs to NP.

I Guess in linear time a mapping σ from {0, . . . , n− 1} to itself.

I Check in polynomial time that σ is a permutation.

I Check in linear time that σ defines a circuit.

24/90

The Hamiltonian Circuit Problem (2)
Let ϕ be a CNF formula with atomic propositions p1, . . . , pn and m clauses
{cj}1≤j≤m where no clause includes a proposition and its negation.

One builds Gϕ in two steps.

d

p1,1 p1,2 p1,3 · · · · · · p1,3m+1 p1,3m+2 p1,3m+3

p2,1 p2,2 p2,3 · · · · · · p2,3m+1 p2,3m+2 p2,3m+3

pn,1 pn,2 pn,3 · · · · · · pn,3m+1 pn,3m+2 pn,3m+3

· · ·

f

25/90

The Hamiltonian Circuit Problem (3)
One also adds vertices {cj}1≤j≤m.

Let pi occurring in cj . Then one adds the “detour”:

pi,3j pi,3j+1

cj

Let ¬pi occurring in cj . Then one adds the “detour”:

pi,3j pi,3j+1

cj

26/90

The Hamiltonian Circuit Problem (4)

Assume ν fulfills ϕ.

Then one builds a (non Hamiltonian) circuit as follows.

I Start from d.

I If ν(p1) = true (resp. false) then go to p1,1 (resp. p1,3m+3) and continue on
the right (resp. left) until p1,3m+3 (resp. p1,1);

I Iterate this process for i = 2, . . . , n;

I go to f and back to d.

For all clause cj , pick a literal x occurring in cj such that ν(x) = true.

I If x = pi then change pi,3j → pi,3j+1 by pi,3j → cj → pi,3j+1;

I If x = ¬pi then change pi,3j+1 → pi,3j by pi,3j+1 → cj → pi,3j .

27/90

The Hamiltonian Circuit Problem (5)

Assume there exists a Hamiltonian circuit. We claim that:

I starting from d, the circuit goes (in descending order) through the “rows”
from left to right or right to left;

I with exactly one detour per clause.

If the claim is valid then:

I choosing ν(pi) = true if the row i is crossed from left to right;

I by examination of the detours ν |= ϕ.

28/90

The Hamiltonian Circuit Problem (6)
Some impossible Hamiltonian circuits.

d

p1,1 p1,2 p1,3

or

p2,1 p2,3m+3

pi,3j pi,3j+1 pi,3j+2

cj

pi,3j pi,3j+1 pi,3j+2 pi,3j+3

cj

29/90

The Hamiltonian Cycle Problem (1)

Let G = (V,E) be a non directed graph with V = {v0, . . . , vn−1}.

A Hamiltonian cycle is a permutation σ of {0, . . . , n− 1} such that:
for all 0 ≤ i < n, {vσ(i), vσ(i+1%n)} ∈ E

The Hamiltonian cycle problem asks whether a Hamiltonian cycle exists.

The Hamiltonian cycle problem belongs to NP.

I Guess in linear time a mapping σ from {0, . . . , n− 1} to itself.

I Check in polynomial time that σ is a permutation.

I Check in linear time that σ defines a cycle.

30/90

The Hamiltonian Cycle Problem (2)

Let G = (V,E) be a directed graph.

One builds a non directed graph G = (V ′, E′) as follows.

I V ′ = {ui | u ∈ V ∧ i ∈ {1, 2, 3}};
I E′ = {{u3, v1} | (u, v) ∈ E} ∪ {{u1, u2}, {u2, u3} | u ∈ V }.

u

v

u1 u2 u3

v1v2v3

31/90

The Hamiltonian Cycle Problem (3)

Denote V = {0, . . . , n− 1}.

• Assume there is a Hamiltonian circuit of G: (σ(0), . . . , σ(n− 1)).

By construction, (σ(0)1, σ(0)2, σ(0)3, . . . , σ(n− 1)1, σ(n− 1)2, σ(n− 1)3) is a
Hamiltonian cycle of G′.

• Assume there is a Hamiltonian cycle of G′.

By construction, for all u ∈ V either u1, u2, u3 or u3, u2, u1 occurs in the cycle.

W.l.o.g. assume that the cycle starts with 01, 02, 03.

By induction the cycle cannot revert this order since there is no edge {u3, v3}.

So the cycle can be denoted (σ(0)1, σ(0)2, σ(0)3, . . . , σ(n− 1)1, σ(n− 1)2, σ(n− 1)3)

implying that σ defines a circuit in G.

32/90

The Subset Sum Problem (1)

Let {v1, . . . , vn, w} be n+ 1 integers.

The subset sum problem asks whether there exists I ⊆ {1, . . . , n} such that:∑
i∈I

vi = w

The subset sum problem belongs to NP.

I Guess I in linear time;

I Compute
∑
i∈I vi in linear time;

I Check whether
∑
i∈I vi = w in linear time.

33/90

The Subset Sum Problem (2)

Let ϕ be a 3CNF formula with m clauses {cj}j≤m and n atomic propositions
p1, . . . , pn.

Build the numbers {v1, . . . , v2n+2m} written with n+m digits where we consider
that every digit is associated either with a clause or a proposition.

Given a number x, x[j] is the jth digit of x.

I for all i ≤ n, for all j ≤ n, v2i−1[j] = v2i[j] = 1i=j ;

I for all i ≤ n, for all j ≤ m,

1. if pi occurs in cj then v2i−1[n+ j] = 1 else v2i−1[n+ j] = 0;
2. if ¬pi occurs in cj then v2i[n+ j] = 1 else v2i[n+ j] = 0;

I for all i ≤ m, for all j ≤ n+m, v2n+2i−1[j] = v2n+2i[j] = 1n+i=j .

For all j ≤ n, w[j] = 1 and for all n < j ≤ n+m, w[j] = 3.

34/90

The Subset Sum Problem (3)

The table describes the different numbers with digits from left to right.

Here we have supposed that pi occurs in cj and ¬pi occurs in ck.

1 i n n+ 1 n+ j n+ k n+m

v2i−1 0 1 0 1 0
v2i 0 1 0 0 1

v2n+2j−1, v2n+2j · · · 0 · · · 0 1 0 0

w 1 · · · 1 3 · · · · · · 3

35/90

The Subset Sum Problem (4)
• Assume ν |= ϕ.

Then define I by:

I If ν(pi) = true then 2i− 1 ∈ I else 2i ∈ I;

I Let 1 ≤]j ≤ 3 be the number of literals of cj satisfied by ν.

1. if]j < 3 then 2n+ 2j − 1 ∈ I;
2. if]j = 1 then 2n+ 2j ∈ I.

It is routine to check, digit by digit, that
∑
i∈I vi = w.

• Assume there exists I such that
∑
i∈I vi = w.

Observe that, whatever I,
∑
i∈I vi does not rise a carry.

Thus for all 1 ≤ i ≤ n, either v2i−1 or v2i but not both belongs to I.

Define ν by ν(pi) = true if v2i−1 ∈ I.

Let cj be a clause. Since there are only two numbers in {vj}j>2n with 1 in the
n+ jth digit there is a vj with j ≤ 2n and j ∈ I with 1 in the n+ jth digit.

I If j = 2i− 1 then pi occurs in cj and ν(pi) = true so ν(cj) = true;

I If j = 2i then ¬pi occurs in cj and ν(pi) = false so ν(cj) = true.

36/90

The Subset Sum Problem (4)

The subset sum problem is pseudo-polynomial: i.e. polynomial when the integers
are written in unary.

The following algorithm operates in O(nw).

For i from 1 to w do T [i]← false

T [0]← true

For i from 1 to n do

For j from w − vi downto 0 do

If T [j] then T [j + vi]← true

Return T [w]

37/90

The Weighted Graph Problem (1)
Let G = (V,E) be a directed graph and p : E → N a weight on edges.

The weight of a path (v0, . . . , vn) is (additively) defined by
∑
i<n p(vi, vi+1).

Given G, p, s, t ∈ V and a ∈ N, the weighted graph problem asks whether there
exists a path from s to t whose weight is a.

This problem is NP-hard by reduction from the subset sum problem.

x0 x1 · · · xn−1 xn

z1 zn

0

v1 0

0

vn 0

A shortest path from s to t of weight a may have (exponential) length:

|V |(a+ 1)− 1

So guessing a path does not show that this problem belongs to NP!

38/90

The Weighted Graph Problem (2)

The Parikh image vρ ∈ NE of a path ρ ∈ E∗ is the vector who counts the
occurrence of edges in ρ inductively defined by:

vε[e] = 0, for e′ 6= e, vρe′ [e] = vρe′ [e] and vρe[e] = vρ[e] + 1

The support Supp(v) of a vector v ∈ NE is defined by:
Supp(v) = {e ∈ E | v[e] > 0}

Let E′ ⊆ E, GE′ = (VE′ , E
′) the graph induced by E′ is defined by:
VE′ = {v, v′ | (v, v′) ∈ E′}

Euler Lemma. Let G = (V,E) be a graph, s 6= t ∈ V and v ∈ NE .

Then v is the Parikh image of path from s to t if and only if:

I GSupp(v) is connected;

I
∑

(s,u)∈E v[(s, u)] = 1 +
∑

(u,s)∈E v[(u, s)];

I
∑

(u,t)∈E v[(u, t)] = 1 +
∑

(t,u)∈E v[(t, u)];

I For all w /∈ {s, t},
∑

(u,w)∈E v[(u,w)] =
∑

(w,u)∈E v[(w, u)].

The necessity of the conditions is straightforward.

39/90

The Weighted Graph Problem (3)
Assume that v satisfies the hypotheses of Euler Lemma.

• Build a path starting from s.

Iterate the following process until blocking.

I Let u be the current end of the path;

I If there is an edge e = (u, u′) in Supp(v) then concatenate e to the path;

I Decrement v[e].

Looking at the hypotheses of Euler Lemma,
the last vertex of the path is t.

• If v = 0 we are done.

• Otherwise, by connectivity, there is an edge (u, u′) ∈ Supp(v) with u belonging
to the path.

Repeat the previous process.

Looking at the hypotheses of Euler Lemma,
this new path is a cycle that can be added to the path.

• By iteration, one builds a path ρ with vρ = v.

40/90

The Weighted Graph Problem (4)

s t (2, 1, 1, 0, 1, 2, 1)
e1

e2

e3

e4

e5
e6 e7

s t (0, 0, 0, 0, 0, 1, 1)
1, 6

2
3

4
5

s t (0, 0, 0, 0, 0, 0, 0)
1, 8

2
3

4
5, 7 6

41/90

The Weighted Graph Problem (5)

A non deterministic polynomial time algorithm

A vertex is visited by a shortest path of weight a from s to t at most a+ 1 times.

1. Guess a vector v ∈ [0, a+ 1]E .

2. Check the conditions of Euler Lemma.

3. Check that
∑
e∈E v[e]p(e) = a.

42/90

Plan

Introduction

NP

3 PSPACE

PTIME

NLOGSPACE

Strict inclusions between classes

43/90

Savitch Theorem (1)

Let G = (V,E) be a directed graph and s 6= t ∈ V .

Then the existence of a path from s to t is decidable in space O(log2(|V |)).

Reach(u, v, `)

If ` ≤ 1 return(u = v ∨ (u, v) ∈ E)

For w ∈ V do

If Reach(u,w, b `2c) ∧ Reach(w, v, d `2e) return(true)

return(false)

Reach(s, t, |V | − 1)

At most dlog(|V |)e nested calls of Reach.

u, v, w, ` are represented in space O(log(|V |)).

Warning: This algorithm does not operate in polynomial time.

44/90

Savitch Theorem (2)

For all measure function f(n) ≥ log(n), NSPACE(f(n)) ⊆ SPACE(f2(n)).

Proof.

LetM be a NTM operating in non deterministic space f(n) on a word w of size n.

W.l.o.g. there is a single accepting configuration.

Define M′, a DTM that operates as follows on w.

• Compute f(n)

• Execute a modified Savitch algorithm to check the reachability of the accepting
configuration from the initial configuration in the configuration graph GM,w.

The modification consists in replacing the test (u, v) ∈ E by u→M v

avoiding to build GM,w.

Corollary: NPSPACE = PSPACE

Warning: This does not imply NLOGSPACE = LOGSPACE.

45/90

Quantified Boolean Formula (QBF)
A quantified boolean formula ϕ is inductively defined by:

I ϕ may be true, false or an atomic proposition;

I ϕ = ¬ϕ1, ϕ = ϕ1 ∨ ϕ2, ϕ = ϕ1 ∧ ϕ2 where ϕ1, ϕ2 are QBF;

I ϕ = ∃p ϕ1, ϕ = ∀p ϕ1, where ϕ1 is a QBF and p is an atomic proposition
not quantified in ϕ1.

Let ν be an interpretation. Then ν may be extended to QBF as follows.

I ν(¬ϕ1) = ¬(ν(ϕ1));

I ν(ϕ1 ∨ ϕ2) = ∨(ν(ϕ1), ν(ϕ2));

I ν(ϕ1 ∧ ϕ2) = ∧(ν(ϕ1), ν(ϕ2));

I ν(∃p ϕ1) = ∨(ν(ϕ1[true/p]), ν(ϕ1[false/p]));

I ν(∀p ϕ1) = ∧(ν(ϕ1[true/p]), ν(ϕ1[false/p])).

Quantifiers may be pushed at the beginning of the formula (prenex form):

I ¬∃p ϕ ≡ ∀p ¬ϕ;

I (∃p ϕ) ∧ θ ≡ ∃q (ϕ[q/p] ∧ θ) where q does not occur in ϕ and θ.

I etc.

46/90

Evaluation of a QBF
An occurrence of a proposition is either under the scope of a quantifier or free.

A closed QBF is a QBF where all occurrences of propositions are quantified.

The truth value of a closed QBF is independent of the interpretation.

EvalQBF(Q1p1 . . . Qnpn ψ)

If n = 0 then return(EvalCons(ψ))

b1 ← EvalQBF(Q2p2 . . . Qnpn ψ[true/p1])

b2 ← EvalQBF(Q2p2 . . . Qnpn ψ[false/p1])

If Q1 = ∃ then return(b1 or b2) else return(b1 and b2)

This algorithm operates in polynomial space.

So the (closed) QBF evaluation problem belongs to PSPACE.

We will prove that (closed) QBF evaluation problem is PSPACE-hard.

47/90

A Reduction for PSPACE-hardness (1)
Let M be a DTM operating in polynomial space p(n) where n is the size of the
input w.

We code a configuration by the following propositions indexed by some x:

I For all q ∈ Q, qx is true if the state is q;

I For all 0 ≤ i ≤ p(n), ix is true if the position of the head is i;

I For all 0 ≤ i ≤ p(n), a ∈ Σ, axi is true if the ith cell contains a.

The set of these propositions is denoted x and also {xi}i≤m (via some renaming).

Observe that m = O(p(n)).

Let c be a configuration. The interpretation of x corresponding to c is denoted νxc .

We define a QBF formula ϕi with free propositions x and y such that for all
configurations c, c’:

I Letting ν be defined by ν(x) = νxc (x) and ν(y) = νyc′(y);

I ν(ϕi) = true iff c’ is reachable from c in at most 2i steps;

I For all ν′ such that ν′(x) = νxc (x) and ν′(ϕi) = true there exists a
configuration c” such that ν′(y) = νyc′′(y).

48/90

A Reduction for PSPACE-hardness (2)
Equality of configurations

Let θ =
∧
i≤m xi ⇔ yi.

A step of M
Let δ(q, a) = (nq(q, a), na(q, a), dp(q, a)).

Let ψ be the conjunction of the subformulas:

I For all i, a ¬ix ⇒ axi ⇔ ayi

I For all i, q, a ix ∧ qx ∧ axi ⇒ nq(q, a)y ∧ na(q, a)yi ∧ (i+ dp(q, a))y

with a conjunctive clause of the conclusion substituted by false
when i+ dp(q, a) /∈ [0, p(n)].

I For all q 6= q′ ¬qy ∨ ¬(q′)y

I For all i 6= i′ ¬iy ∨ ¬(i′)y

I For all a 6= a′, for all i, ¬ayi ∨ ¬a′
y
i

Then ϕ0 = θ ∨ ψ.

49/90

A Reduction for PSPACE-hardness (3)

The formula ϕi+1 guesses an intermediate configuration.

First attempt.
ϕi+1 = ∃z ϕi[z/y] ∧ ϕi[z/x]

Problem: the size of ϕi+1 is twice the size of ϕi.

Using a logical trick.

ϕi+1 = ∃z ∀t ∀u (t = x ∧ u = z) ∨ (t = z ∧ u = y)⇒ ϕi[t/x,u/y]

The formula corresponding to the reduction is ϕm[νc0
/x, νcf /y]

where c0 (resp. cf) is the initial (resp. accepting) configuration.

50/90

Another PSPACE-complete problem

The QBF evaluation problem where ϕ = Q1p1 . . . Qnpn ψ

with ψ in 3CNF is PSPACE-complete.

Proof.

Let ϕ = Q1p1 . . . Qnpn θ be a QBF formula.

Let ψ be the 3CNF formula of the reduction for 3SAT starting from θ.

Let x1, . . . , xm be the additional propositions of ψ.

Our previous proof establishes that θ ≡ ∃x1 . . . ∃xm ψ.

Thus ϕ ≡ Q1p1 . . . Qnpn ∃x1 . . . ∃xm ψ.

51/90

The Universality of Regular Languages

Let Σ be an alphabet. A regular expression E is inductively defined by:

I E is ∅, ε or a ∈ Σ;

I E is E1 + E2, E1 · E2, E∗1 where E1, E2 are regular expressions.

The regular language L(E) ⊆ Σ∗ is inductively defined by:

I L(ε) = {ε}, L(a) = {a};
I L(E1 + E2) = L(E1) ∪ L(E2);

I L(E1 · E2) = {w1w2 | w1 ∈ L(E1) ∧ w2 ∈ L(E2)};
I L(E∗1) = {w1 . . . wn | ∀i ≤ n wi ∈ L(E1)}.

The universability problem for a regular expression E asks whether L(E) = Σ∗.

52/90

Solving the Universality Problem (1)
Build a non deterministic automaton AE that accepts L(E).

Aε Aa
a

AE1

AE2

AE1+E2
AE∗1

AE1

a

a

AE1
AE2

AE1·E2(ε /∈ L(E2))

a

a

53/90

Solving the Universality Problem (2)

Let AE be the complementary automaton of AE
obtained by the determinization procedure.

Check in AE without building it that L(AE) 6= ∅.

Let Q the set of states of AE with Q0 the initial states and Qf the final states.

cpt← 0
Q′ ← Q0

Repeat
If Q′ ∩ F = ∅ return true
cpt← cpt+ 1
Guess a ∈ Σ
Q′ ←

⋃
q∈Q′ δ(q, a)

until cpt = 2|Q|

return false

Thus the universality problem belongs to NPSPACE = PSPACE.

54/90

Universality Problem is PSPACE-hard (1)

Let M be DTM operating in space p(n) on a word w (with w[1] = $) of size n.

We code a run of M by a word of Σ∗:

I Let T be the alphabet of the tape.
Then QT = {qX | q ∈ Q ∧X ∈ T}, ∆ = T ∪QT and Σ = ∆ ∪ {]};

I A configuration c = (t, i, q) where t is the tape content, i the position of the
head and q is the state is coded by a word vc = vc[1] . . . vc[p(n)] with:

1. for all j 6= i, vc[j] = t[j];
2. vc[i] = qt[i].

I A run c1 . . . ck is coded by the word]vc1] . . .]vck].

We build a regular expression EM,w that specifies:

I the words that are not code of runs of M on w;

I the words that are code of non accepting runs of M on w.

Thus L(EM,w) = Σ∗ if and only if w is not accepted by M.

55/90

Universality Problem is PSPACE-hard (2)
Let us decompose EM,w = A+B + C +D where expressions A,B,C,D
correspond to the possible cases.

1. A denotes the words v that do not contain some letter qfX;

2. B denotes the words v such that]vc0 is not a prefix of v;

3. C denotes the words v that have not the following pattern
v =]v1]v2] . . .]vk] where for all i ≤ k:

3.1 |vi| = p(n);
3.2 exactly one letter of vi belongs to QT ;
3.3 all other letters of vi belong to T .

4. D denotes the words v with |v| > 2 + p(n) that cannot contain two successive
configurations of M.

Notations.

I Let S = {s1, . . . , sk} ⊆ Σ, Ŝ ≡ s1 + · · ·+ sk;

I Let E be an expression and k be an integer,
Ek ≡ E · E · · ·E · E with k occurrences of E.

56/90

Universality Problem is PSPACE-hard (3)

Let Σr = Σ \ {qfX | X ∈ T}. Then A = Σ̂∗r .

Let:

I E2,1 = ∆̂ · Σ̂∗;
I Let Σ1 = Σ \ {q0w[1]}. Then E2,2 = Σ̂ · Σ̂1 · Σ̂∗;
I For all 2 ≤ i ≤ n, let Σi = Σ \ {w[i]}. Then E2,i = Σ̂i · Σ̂i · Σ̂∗;
I Let Σ[= Σ \ {[}. Then for all n+ 1 ≤ i ≤ p(n), E2,i = Σ̂i · Σ̂[· Σ̂∗.

Then B = E2,1 + . . .+ E2,p(n) + ε+ Σ̂ + · · ·+ Σ̂p(n).

Let:

I For all 0 ≤ i ≤ p(n)− 1, E3,i = Σ̂∗ ·] · ∆̂i ·] · Σ̂∗ (too short configurations)

I E3,p(n)+1 = Σ̂∗ ·] · ∆̂p(n)+1 · Σ̂∗ (too long configurations)

I F3 = ∆̂∗ + ∆̂∗ ·] · ∆̂∗ + ∆̂ · Σ̂∗ + Σ̂∗ · ∆̂ (wrong pattern of])

I G3 = Σ̂∗ ·] · T ∗ ·] · Σ̂∗ + Σ̂∗ · Q̂T · T̂ ∗ · Q̂T · Σ̂∗ (wrong pattern of states)

Then C = E3,1 + · · ·+ E3,p(n)−1 + E3,p(n)+1 + F3 +G3.

57/90

Universality Problem is PSPACE-hard (4)

Assume that a word v codes a run with |v| > 2 + p(n).

Then for i > 1, v[i+ p(n) + 1] = fM(v[i− 1]v[i]v[i+ 1])
for some function that only depends on M.
(arbitrarily defined for triples that cannot occur in runs)

Let gM from Σ3 to 2Σ defined by gM(abc) = Σ \ {fM(abc)}

Let Dabc = Σ̂∗ · a · b · c · Σ̂p(n) · ̂gM(abc) · Σ̂∗

Then D =
∑
abc∈Σ3 Dabc.

It is routine to check that E is built in polynomial time.

58/90

Plan

Introduction

NP

PSPACE

4 PTIME

NLOGSPACE

Strict inclusions between classes

59/90

Horn Normal Form (HNF)

Let ϕ be a CNF formula. Then ϕ is in HNF if for all clause ψ of ϕ:

I either ψ = ¬p1 ∨ · · · ∨ ¬pk ∨ q (a positive literal)
equivalently ψ ≡ (p1 ∧ · · · ∧ pk)⇒ q

I either ψ = ¬p1 ∨ · · · ∨ ¬pk (no positive literal)
equivalently ψ ≡ (p1 ∧ · · · ∧ pk)⇒ false

Hψ = p1 ∧ · · · ∧ pk is the hypothesis. When k = 0, Hψ = true.

q or false is the conclusion, denoted Cψ.

Example.

ϕ = (p) ∧ (p⇒ q) ∧ (p ∧ q ⇒ r) ∧ (r ∧ s⇒ false)

ϕ is satisfiable: ν(p) = ν(q) = ν(r) = true and ν(r) = false.

The HORNSAT problem asks whether a HNF formula is satisfiable.

60/90

Solving HORNSAT

Clauses← Clausesϕ; For p ∈ Propϕ do ν(p) = ⊥
Repeat

Invariant: Every ν′ |= ϕ extends ν.

Invariant: ν(ψ) = true for ψ ∈ Clausesϕ \ Clauses.

Invariant: For all p ∈ Propϕ, ν(p) = true or ν(p) = ⊥.

done← true

For ψ ∈ Clauses do

If ν(Hψ) = true then

If Cψ = false then return false

ν(Cψ)← true; Clauses← Clauses \ {ψ}; done← false

Until done

Assertion: For all ψ ∈ Clauses, there exists p ∈ Hψ with ν(ψ) = ⊥
For p ∈ Propϕ do if ν(p) = ⊥ then ν(p) = false

return ν

Thus HORNSAT belongs to PTIME.

61/90

HORNSAT is PTIME-hard (1)
Let M be a DTM operating in polynomial time p(n) where n is the size of the
input w.

We code a configuration at time j ≤ p(n) by the following propositions:

I For all q ∈ Q, qj is true if the state is q;

I For all 0 ≤ i ≤ p(n), ij is true if the position of the head is i;

I For all 0 ≤ i ≤ p(n), a ∈ Σ, aji is true if the ith cell contains a.

We denote sj the set of these propositions.

Given a configuration c of M operating on w, νjc is the interpretation of sj

corresponding to c.

The formula ϕM,w is a conjunction of subformulas among them for all j ≤ p(n):

I for all q 6= q′ ∈ Q, ¬qj ∨ ¬(q′)j ;

I for all i < i′ ≤ p(n), ¬ij ∨ ¬(i′)j ;

I for all i ≤ p(n) and for all a 6= a′ ∈ Σ, ¬aji ∨ ¬(a′)ji .

These subformulas ensure that, given an interpretation ν |= ϕM,w,

for all j, there is at most one configuration cjν such that ν(sj) = νcjν (sj).

62/90

HORNSAT is PTIME-hard (2)
The following subformulas are related to initial and final configurations:

qinit0, 10, $0, w[1]01, . . . , w[n]0n, [0n+1, . . . , [
0
p(n), qaccp(n).

These subformulas ensure that, given an interpretation ν |= ϕM,w,
c0
ν is defined and is the initial configuration

and, if defined, c
p(n)
ν is an accepting configuration.

Let δ(q, a) = (nq(q, a), na(q, a), dp(q, a)). The following subformulas are related
to the steps of M. For all j < p(n), i ≤ p(n), a ∈ Σ:

I ij ∨ aji ∨ ¬a
j+1
i , ij ∨ aji ∨ ¬a

j
i , i

j ∨ aj+1
i ∨ ¬aj+1

i , ij ∨ aj+1
i ∨ ¬aji ;

I for all q ∈ Q, (qj ∧ ij ∧ aji) ⇒ nq(q, a)j+1 ∧ (i+ dp(q, a))j+1 ∧ na(q, a)j+1
i

with the conclusion substituted by false when i+ dp(q, a) /∈ [0, p(n)].

These subformulas ensure that, given an interpretation ν |= ϕM,w,
for all j < p(n), if cjν is defined then cj+1

ν is defined and cjν →M cj+1
ν .

• Thus if ν |= ϕM,w then c0
ν , . . . , c

p(n)
ν are all defined and correspond to an

accepting run for w.

• Conversely assume c0, . . . , cp(n) is an accepting run.

Then ν, defined for all j by: ν(sj) = νcj (s
j), satisfies ϕ.

63/90

HORNSAT is PTIME-hard (3)

The construction of ϕM,w is performed in LOGSPACE.

For instance to generate the subformulas,

for all j < p(n), i ≤ p(n), q ∈ Q, a ∈ Σ:

(qj ∧ ij ∧ aji)⇒ nq(q, a)j+1 ∧ (i+ dp(q, a))j+1 ∧ na(q, a)j+1
i

The algorithm consists in four nested loops where:

I The sizes of i and j belong to O(log(p(n))) = O(log(n));

I The sizes of q and a belong to O(1).

64/90

3HORNSAT is PTIME-hard
Let ϕ be a HNF formula. Build ϕ′ as follows. For all clause ψ:

I If ψ = (p1 ∧ · · · ∧ pk)⇒ q then
ϕ′ has clauses (p1 ∧ p2)⇒ c2, (c2 ∧ p3)⇒ c3, . . . , (ck−1 ∧ pk)⇒ q;

I If ψ = (p1 ∧ · · · ∧ pk)⇒ false then
ϕ′ has clauses (p1 ∧ p2)⇒ c2, (c2 ∧ p3)⇒ c3, . . . , (ck−1 ∧ pk)⇒ false.

where c2, . . . , ck−1 are new propositions.

Sketch of proof.

Let ψ = (p1 ∧ · · · ∧ pk)⇒ q.

• Assume ν(ϕ) = true. Extend ν to ν′ as follows.

If ν(Hψ) = true then ν′(c2) = · · · = ν′(ck) = true.

Otherwise let i be the first i with ν(pi) = false

If i ≤ 2 then ν′(c2) = · · · = ν′(ck) = false

else for j < i then ν(cj) = true and for j ≥ i, ν(cj) = false

• Assume ν′(ϕ′) = true.

If for some i, ν′(pi) = false then ν′(ψ) = true.

Otherwise by induction, for all i, ν′(ci) = true implying ν′(q) = true.

65/90

Solving the Closure Problem
Let (G, •) be a finite set equipped with a binary law.

Let H ⊆ G, the closure of H denoted Cl(H) is the smallest set such that:

I H ⊆ Cl(H);

I for all a, b ∈ Cl(H), a • b ∈ Cl(H).

The closure problem asks given (G, •), H ⊆ G and g ∈ G whether g ∈ Cl(H).

CH ← H
Repeat

If g ∈ CH then return true
done← true
For g′, g′′ ∈ CH do

If g′ • g′′ /∈ CH then
CH ← CH ∪ {g′ • g′′}; done← false

Until done
return false

66/90

The Closure Problem is PTIME-hard (1)

One reduces 3HORNSAT to the closure problem.

Let ϕ be a formula in 3HNF.

Let ψ =
∨
i∈I `i be a clause. The components of ψ are {`i}i∈J with J ⊆ I.

The reduction

The items of G are the components of clauses of ϕ and a special item $.

There are at most eight components per original clause.

The commutative law • is defined as follows.

I If u = {p} and v = {¬p} ∪ C then u • v = C;
(if v = {¬p} then C = ∅)

I Otherwise u • v = $.

g = ∅ and H = {{`i}i∈I |
∨
i∈I `i is a clause of ϕ}.

67/90

The Closure Problem is PTIME-hard (2)
Correctness of the reduction.

• Assume there exists ν with ν(ϕ) = true.

By induction, for all {`i}i∈J ∈ Cl(H), ν(
∨
i∈J `i) = true.

Thus the empty set cannot belong to Cl(H).

• Assume the empty set does not belong to Cl(H).

Define ν(p) = true iff {p} ∈ Cl(H).

◦ Let ψ = ¬p1 ∨ ¬p2 ∨ ¬p3 be a clause of ϕ with ν(ψ) = false.

Then {p1}, {p2} and {p3} belong to Cl(H).

Since {p1} • ({p2} • ({p3} • {¬p1,¬p2,¬p3})) is the empty set, this yields a
contradiction.

◦ Let ψ = ¬p1 ∨ ¬p2 ∨ q be a clause of ϕ with ν(ψ) = false.

Then {p1} and {p2} belong to Cl(H) and {q} does not belong to Cl(H).

Since {p1} • ({p2} • {¬p1,¬p2, q}) = {q}.
So {q} ∈ Cl(H) yielding a contradiction.

Why this reduction does not work for 3SAT?

68/90

Reachability in non Deterministic Graph
A non deterministic graph G = (V,A) is defined by vertices V and triples A ⊆ V 3.

Interpretation. From u, choosing (u, v, w) ∈ A leads to either v or w.

Let W ⊆ V . Then Reach(W) is the smallest set such that:

I W ⊆ Reach(W);

I For all (u, v, w), if {v, w} ⊆ Reach(W) then u ∈ Reach(W).

Given G, W and s ∈ V , the reachability problem asks whether s ∈ Reach(W).

Z ←W
Repeat

If s ∈ Z then return true
done← true
For (u, v, w) ∈ A do

If u /∈ Z ∧ {v, w} ⊆ Z then
Z ← Z ∪ {u}; done← false

Until done
return false

Reduction from the closure problem. (u, v, w) ∈ A iff u = v • w.

69/90

Context-Free Grammars

A context-free grammar G is defined by:

I a terminal alphabet Σ;

I a non terminal alphabet Γ including an axiom S;

I a set of production rules R where T → w ∈ R implies T ∈ Γ and
w ∈ (Σ ∪ Γ)∗

The languages {L(G,T)}T∈Γ are mutually inductively defined by:

I If T → w is a rule with w ∈ Σ∗ then w ∈ L(G,T);

I Si T → w0T1w1 . . . Tnwn is a rule

with wi ∈ Σ∗, Ti ∈ Γ and ui ∈ L(G,Ti)

then w0u1 . . . unwn ∈ L(G,T).

70/90

A Context-Free Grammar

A grammar for arithmetic expressions.

Σ = {(,),+, ·, 0, . . . , 9} and Γ = {E, T, F} with E the axiom.

An expression is a sum of terms.

E → T | E + T

A term is a product of factors.

T → F | T · F

A factor is a digit or an expression in parentheses.

F → 0 | 1 | 2 | . . . | 9 | (E)

To obtain (3 + 5) · 2:

E → T → T · F → F · F → F · 2→ (E) · 2→ (T + E) · 2→ (T + T) · 2

→ (T + F) · 2→ (T + 5) · 2→ (F + 5) · 2→ (3 + 5) · 2

71/90

The Emptiness Problem Belongs to PTIME

The emptiness problem asks whether L(G,S) = ∅.

Let Prod(G) = {T | L(G,T) 6= ∅}.

Prod← ∅
Repeat

If S ∈ Prod then return true

done← true

For T → w0T1w1 . . . Tnwn ∈ R do

If T /∈ Prod ∧ {T1, . . . , Tn} ⊆ Prod then

Prod← Prod ∪ {T}; done← false

Until done

return false

72/90

The Emptiness Problem is PTIME-hard

Reduction of the closure problem.

Let ((G, •), g,H) be a closure problem.

Then the context-free grammar is built as follows.

I Σ is irrelevant (and can be empty).

I Γ = G.

I The axiom is g.

I The production rules are defined by:
{u→ vw | u = v • w}

⋃
{u→ ε | u ∈ H}.

The correction is immediate.

73/90

Boolean Circuits
A boolean circuit is a acyclic directed graph where vertices are called gates.

I A gate has an identifier
defined according to some topological sort of the graph;

I A gate has some incoming edges called the inputs;

I In addition a gate has a type: false, true, ∧, ∨.

A circuit has the following restrictions:

I Gate 0 is the single false-typed gate and has no input;

I Gate 1 is the single true-typed gate and has no input;

I All other gates have at least one input.

The boolean values V al of the gates are inductively defined by:

I V al(0) = false, V al(1) = true;

I Let g be a ∨-gate with inputs {gi}i≤k.
If all V al(gi) are defined then V al(g) =

∨
i≤k V al(gi)

I Let g be a ∧-gate with inputs {gi}i≤k.
If all V al(gi) are defined then V al(g) =

∧
i≤k V al(gi)

74/90

A Boolean Circuit

true

false

∨

∧

∧ ∨

true

false

false true

75/90

The Circuit Value Problem

Let C be a circuit and out be a gate of C.
The circuit value problem asks for V al(out).

We assume that the circuit representation gates are ordered

w.r.t. some topological sort of the graph.

A polynomial time algorithm for the circuit value problem.

For g ∈ C do
Case tp(g) of
false : V al[g]← false;
true : V al[g]← true;
∨ : V al[g]←

∨
h∈In(g) V al[h];

∧ : V al[g]←
∧
h∈In(g) V al[h];

It remains polynomial time with other gate types: ¬, ⇒, etc.

76/90

From Closure to Circuits (1)
Let ((G, •), H, g) be a closure problem with n = |G|.
Let Cli(H) defined for i from 0 to n:

Cl0(H) = H and Cli+1(H) = {x | ∃y, z ∈ Cli(H) x = y • z} ∪ Cli(H).

If Cli+1(H) = Cli(H) then for all j > i, Clj(H) = Cli(H).
Thus Cln(H) = Cl(H) where n = |G|.

The circuit has the following gates.

I For all 0 ≤ i ≤ n and x ∈ G, ∨-gates (i, x) evaluate to true iff x ∈ Cli(H);

I For all 1 ≤ i ≤ n and y, z ∈ G ∧-gates (i, y, z) evaluate to true iff
{y, z} ⊆ Cli−1(H).

Gate out is (n, g).

The inputs of the gates are:

I For all x, (0, x) has an input : true (resp. false) if x ∈ H (resp. x /∈ H);

I For all x and i ≥ 1, (i, x) has the following inputs : (i− 1, x) and all (i, y, z)
such that x = y • z;

I For all y, z, (i, y, z) has two inputs : (i− 1, y) and (i− 1, z).

77/90

From Closure to Circuits (2)

Let ((G, •), H, g) be a closure problem with n = |G|.

The reduction algorithm.

Write(id : 0); Write(tp : false); Write(id : 1); Write(tp : true)

For x ∈ G do

Write(id : (0, x)); Write(tp : ∨)

If x ∈ H then Write(in : 1) else Write(in : 0)

For i from 1 to n do

For y, z ∈ G do

Write(id : (i, y, z)); Write(tp : ∧); Write(in : (i− 1, y)); Write(in : (i− 1, z))

For x ∈ G do

Write(id : (i, x)); Write(tp : ∨); Write(in : (i− 1, x))

For y, z ∈ G do

If x = y • z then Write(in : (i, y, z))

Write(out : (n, g))

78/90

Plan

Introduction

NP

PSPACE

PTIME

5 NLOGSPACE

Strict inclusions between classes

79/90

The Reachability Problem in Graphs

Let G = (V,E) be a graph and s, t two vertices.

The reachability problem asks whether there is a path in G from s to t.

Solving the reachability problem.

u← s
cpt← 0
Repeat

If u = t return true
If there is no (u, v) ∈ E return false
guess (u, v) ∈ E;
u← v
cpt← cpt+ 1

Until cpt = n
return false

This algorithm operates non deterministically in logarithmic space.

80/90

Reachability Problem is NLOGSPACE-hard
Let M be a NTM operating in space log(n) on a word w with size n.

W.l.o.g there is a single accepting configuration.

A configuration is given by the position of the two heads (O(log(n)) and
O(log(log(n)))), the state (O(1)), and the working tape content (O(log(n))).

The input word is not required.

The output of the reduction.

The reachability problem has the configuration graph and the initial and accepting
configurations as inputs.

The space complexity of the reduction.

I The reduction algorithm writes the number of configurations
which can be computed in O(log(n)).

I Then it performs a loop indexed by configuration c to build the edges
outgoing c.

I Thus it needs the space for two configurations (and some overhead)
in O(log(n)).

81/90

Summary for Language Problems

Emptiness Universality

Non Deterministic Automata NLOGSPACE-complete PSPACE-complete

Context-Free Grammars PTIME-complete Undecidable

The undecidability result will be proven in the formal language lectures.

82/90

Non Deterministic Computations

A computing NTM M is a NTM with an output tape.

M (non deterministically) computes function f if for all word w:

I For all accepting runs on w, the output tape contains f(w);

I There is at least one accepting run on w.

Example.

Assume that in w there is an unknown letter that occurs more than |w|2 .

Guess a ∈ Σ

cpt← 0

For i from 1 to n do

If w[i] = a then cpt← cpt+ 1

If cpt > |w|
2 then return cpt else return reject

83/90

The Number of Reachable Configurations
Let M be a NTM that operates in log(n) on a word w of size n.
Then there is a NTM M′ that operates in O(log(n))
counting the number of reachable configurations by M on w.

Compute the size of a configuration of M on word w; d← 0; N ← 1
Repeat
OldN ← N ; N ← 0 % oldN is the] of configurations reachable with at most d steps
For current ∈ ConfM,w do % check if current is reachable with at most d+ 1 steps
acc← false; cpt← 0 % cpt controls the validity of the guesses
For local ∈ ConfM,w do % check if local is reachable with at most d steps

Guess a run σ from init to local with at most d steps
without computing the configuration graph.
If σ is found then
cpt← cpt+ 1
If local = current or local→M current then
N ← N + 1; acc← true; break

End For
If not acc and cpt < OldN then reject % some guesses were wrong

End For
d← d+ 1

Until N = OldN

Return N

84/90

NLOGSPACE=coNLOGSPACE
Let M be a NTM that operates in log(n) on a word w of size n. Then there is
a NTM M′ that operates in O(log(n)) that accepts w iff M rejects w.

Compute the size of a configuration of M on word w
d← 0; N ← 1
Repeat
OldN ← N ; N ← 0
For current ∈ ConfM,w do
acc← false; cpt← 0
For local ∈ ConfM,w do

Guess a run σ from init to local with at most d steps
If σ is found then
cpt← cpt+ 1
If local = current or local→M current then

If current is accepting then reject
N ← N + 1; acc← true; break

End For
If not acc and cpt < OldN then reject

End For
d← d+ 1

Until N = OldN

accept

85/90

Plan

Introduction

NP

PSPACE

PTIME

NLOGSPACE

6 Strict inclusions between classes

86/90

Deterministic Space Hierarchy (1)

Let f(n) ≥ log(n) and g(n) ≥ log(n) two measure functions fulfilling:

lim inf
n→∞

f(n)

g(n)
= 0

Then there exists a language L accepted by a DTM operating on w in space
g(|w|) but by no DTM operating on w in space f(|w|).

Thus, NLOGSPACE ⊆ LOG2SPACE (PSPACE (EXPSPACE.

We consider representations of DTM such that for all M, there exists nM with:

I for all n ≥ nM, there exists M̃n a representation of M of size n;

I for instance pick an arbitrary representation M̂. Then nM = |M̂|+ 1;

I and M̃n = 1n−nM0M̂.

87/90

Deterministic Space Hierarchy (2)
Let U be a DTM that takes as input w and works as follows.

It has a special working tape managing a counter.

Let n = |w|, then:

I U computes g(n).

I U marks all its working tapes at position g(n) with some symbol
so that it (possibly) later stops and rejects when reading it.

I If w is not the representation of a DTM then U rejects.

Otherwise assume w = M̃k for some k with nq = |QM|, nt the number of
working tapes of M and na = |ΣM|.

I U initializes its counter to nqf(n)ntdlog(n+ 1)enntf(n)
a .

I U simulates the run of M on w decrementing its counter after any step.

I U stops and rejects if the counter equals 0.

I When the simulation ends, U rejects iff M accepts.

88/90

Deterministic Space Hierarchy (3)

• The initial value of this counter strictly bounds the maximal number of steps
that M can perform if it operates in space f(n).

Given a DTM M, this counter uses space O(f(n)).

• Let L be the language accepted par U .

By construction, U operates in space g(n).

• Assume that L is accepted by a DTM M operating in space f(n).

The simulation of M requires space O(f(n)).

Using lim infn→∞
f(n)
g(n) = 0, one selects some k enough large

such that on M̃k, U achieves the simulation of M.

Thus M accepts M̃k iff U rejects it, yielding a contradiction.

89/90

Deterministic Time Hierarchy

Let f(n) ≥ n and g(n) ≥ n two measure functions fulfilling:

lim inf
n→∞

f(n) log(f(n))

g(n)
= 0 and lim

n→∞

g(n)

n
=∞

Then there exists a language L accepted by a DTM operating on w in time
g(|w|) but by no DTM operating on w in time f(|w|).

90/90

Non Deterministic Time Hierarchy

Let f(n) ≥ n and g(n) ≥ n two measure functions fulfilling:

lim
n→∞

f(n+ 1)

g(n)
= 0 and lim

n→∞

g(n)

n
=∞

Then there exists a language L accepted by a NTM operating on w in time
g(|w|) but by no NTM operating on w in time f(|w|).

	Introduction
	NP
	PSPACE
	PTIME
	NLOGSPACE
	Strict inclusions between classes

