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Mixing non determinism and probability
Numerous systems present both non deterministic and probabilistic features.

Acting in an uncertain world

non determinism: decisions of an agent;

probability: effects of the decisions;

goal: maximizing some utility function.

Randomness against the environment

probability: distributed randomized algorithm;

non determinism: network behaviour;

goal: evaluating the worst case behaviour.

Optimization problems
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The spinner game

The player has to compose a five-digit number.

The digits are randomly chosen by a spinner during five rounds.

After every round (except the last one),
the player chooses in which position he inserts the current digit.

The goal of the player is to obtain the largest number as possible.
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Management of a stock

The stock is in a warehouse with fixed capacity.

The manager decides at the beginning of every month,
which additional stock he will order.

The monthly commands randomly arrive following some distribution.
If the commands exceed the inventory the commands are lost.

Every unit of a stock has a monthly cost while selling it provides a benefit.

The aim of the manager is to maximize the expected profit.

stock

time

orders

commands

capacity
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Introduction to Markov decision process

A Markov decision process MDP is a (finite) transition system.

The dynamic of the system is defined as follows.

Non deterministically, one chooses an action enabled in the current state.

Then one randomly selects the next state.
The distribution depends on the current state and on the selected action.

There is a numerical reward per pair of (current) state and (selected) action.

For finite horizon problems, there is a terminal reward per state.

For some problems, rewards are not required.
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Syntax of MDP

An MDP M def
= (S, {As}s∈S, p, r, rend) is defined by:

S, the finite set of states;

For every state s, As, the finite set of actions enabled in s.

A
def
=
⋃
s∈S As is the whole set of actions.

p, a mapping from {(s, a) | s ∈ S, a ∈ As} to the set of distributions over S.
p(s′|s, a) denotes the probability to go from s to s′ if a is selected.

r, a mapping from {(s, a) | s ∈ S, a ∈ As} to R.
r(s, a) is the reward associated with the selection of a in state s.

rend, a mapping from S to R. rend(s) is the reward when ending in state s.
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An example of MDP

An MDP with two states (s1 and s2)

In s1 actions a and b are enabled while in s2 only action a is possible.

A vertex s is labelled by
∑
a∈As

r(s, a)a;

An edge from s to s′ is labelled by
∑
a∈As

p(s′|s, a)a

The ending edge of s is labelled by rend(s).

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

When a is chosen in state s1,
the probability that the next state is s2, is 0.7 and the reward is 5.

The terminal reward of s2 is 1.5.

The rewards could depend on the destination state letting unchanged the theory.
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Rewards for histories

A history σ
def
= (s0, a0, . . . , si, ai, . . .) is a sequence alternating states and actions.

lg(σ) ∈ N ∪ {∞} denotes the number of actions of σ.

Let σ be an history and 0 < λ < 1. Then:

When lg(σ) <∞, the total reward of σ is:

u(σ)
def
=
∑

0≤i<lg(σ) r(si, ai) + rend(slg(σ)).

and v(σ)
def
=
∑

0≤i<lg(σ) r(si, ai) is the pure total reward.

When lg(σ) =∞, the discounted reward of σ w.r.t. λ is:

vλ(σ)
def
=
∑

0≤i r(si, ai)λ
i.

When lg(σ) =∞, the lim sup average reward of σ is:

g+(σ)
def
= lim supn→∞

1
n

∑
0≤i<n r(si, ai).

When lg(σ) =∞, the lim inf average reward of σ is:

g−(σ)
def
= lim infn→∞

1
n

∑
0≤i<n r(si, ai).
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Examples of rewards

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

σ
def
= (s1, a, s2, a, s1, b, s2)

u(σ) = 5− 1 + 10 + 1.5 = 15.5

σ
def
= (s1, a)ω

v 2
3
(σ) = 5(1 + 2

3 + ( 2
3 )2 + · · · ) = 15

σ
def
= (s1, a, s2, a)(s1, b, s2, a) . . . (s1, a, s2, a)2

i

(s1, b, s2, a)2
i

. . .

g+(σ) = limi→∞
13(2i+1−1)+5
4(2i+1−1)+1 = 13

4

g−(σ) = limi→∞
13(2i−1)+4(2i)
4(2i−1)+2i+1 = 17

6
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From MDP to DTMC: principles

In order to obtain a stochastic process,
one needs to fix the non deterministic features of the MDP.

Decision rules select at some time instant the next action
depending on the history of the execution.

Policies specify which decision rules should be used at any time instant.

Classes of decision rules and policies are defined depending on two criteria.

the information used in the history;

the way the selection is performed (deterministically or randomly).
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From MDP to DTMC: decision rules

A decision rule dt maps every history σ of length t <∞
to a distribution dt(σ) over Ast .

DHR
t is the set of decision rules at time t.

It is also called history-dependent randomized decision rules.

DHD
t is the subset of history-dependent deterministic decision rules at time t.

It consists in selecting a single action. In this case dt(σ) ∈ Ast .

DMR
t is the subset of Markovian randomized decision rules at time t.

DMR
t , also denoted DMR, only depends on the final state of the history.

So one denotes dt(s) the distribution that depends on s.

DMD is the subset of Markovian deterministic decision rules at time t.
DMD only depends on the final state of the history and selects a single action.
So dt(s) ∈ As.
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From MDP to DTMC: policies
A policy (also called a strategy) πππ

def
= (d0, . . . , dt, . . .) is a finite or infinite sequence

of decision rules such that dt is a decision rule at time t.

The set of policies such that for all t, dt ∈ DK
t is denoted ΠK .

When decisions dt are Markovian and all equal to some d,
πππ is said stationary and denoted d∞.

ΠSR (resp. ΠSD) is the set of stationary randomized (resp. deterministic) policies.

Once a policy is chosen, an MDP becomes a DTMC
whose states are information used in histories.

Given d∞, the states of the DTMC are those of the MDP and the matrix Pd is:

Pd[s, s
′]

def
=
∑
a∈As

d(s)(a)p(s′|s, a)

The (expected) reward in state s is: rd[s]
def
=
∑
a∈As

d(s)(a)r(s, a)
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A randomized stationary policy

In state s1, choose a with probability 0.3 and b with probability 0.7.

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a s1 s2

8.5 −1

−2 1.5

0.91

0.1

0.09 0.9
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A Markovian non stationary policy

In state s1, choose a on even instants and b on odd instants.

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

s10 s21

s11 s20

5 −1

−2 1.5

0.7

0.1

0.3 0.90.9

10 −1

−2 1.5

1

0.1
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Rewards for policies

Xn denotes the random state at time n and Yn denotes the action at time n.

Let πππ be a policy with Eπππ the corresponding expectations,
t ∈ N and 0 < λ < 1. Then:

The total (expected) reward at time t of πππ is:

uπππt
def
=
∑

0≤i<tE
πππ(r(Xi, Yi)) + Eπππ(rend(Xt))

The pure total (expected) reward at time t of πππ is:

vπππt
def
=
∑

0≤i<tE
πππ(r(Xi, Yi))

The discounted (expected) reward of πππ w.r.t. λ is:

vπππλ
def
=
∑

0≤i λ
iEπππ(r(Xi, Yi))

The lim sup average (expected) reward of πππ is:

gπππ+
def
= lim supn→∞

1
n

∑
0≤i<nE

πππ(r(Xi, Yi))

The lim inf average (expected) reward of πππ is:

gπππ−
def
= lim infn→∞

1
n

∑
0≤i<nE

πππ(r(Xi, Yi))
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Optimization problems

Let u∗t
def
= sup(uπππt | πππ ∈ ΠHR)

Compute u∗t ;

When there is some policy πππ such that u∗t = uπππt compute such a policy;

In general given ε > 0, compute some policy πππε such that u∗t ≤ u
πππε
t + ε.

Solve similar problems for:

the discounted reward: v∗λ
def
= sup(vπππλ | πππ ∈ ΠHR);

the lim sup and lim inf average rewards:

g∗+
def
= sup(gπππ+ | πππ ∈ ΠHR) and g∗−

def
= sup(gπππ− | πππ ∈ ΠHR).
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From policies to Markovian policies (1)
Let πππ ∈ ΠHR be a policy.
Then there exists πππ′ ∈ ΠMR such that for all n ∈ N, s0, s ∈ S and a ∈ As:

Prπππ
′
(Xn = s, Yn = a | X0 = s0) = Prπππ(Xn = s, Yn = a | X0 = s0)

Proof. Let us define a Markovian policy πππ′ = (d′0, d
′
1, . . .) by:

d′n(s)(a)
def
= Prπππ(Yn = a | Xn = s,X0 = s0)

For n = 0, the equality
Prπππ

′
(Xn = s, Yn = a | X0 = s0) = Prπππ(Xn = s, Yn = a | X0 = s0)

is only relevant for s = s0 and holds by definition of πππ′.

Assume that the equality holds up to n. Then:
Prπππ

′
(Xn+1 = s | X0 = s0) =

∑
s′∈S,a∈As′

Prπππ
′
(Xn = s′, Yn = a | X0 = s0)p(s|s′, a)

=
∑
s′∈S,a∈As′

Prπππ(Xn = s′, Yn = a | X0 = s0)p(s|s′, a) = Prπππ(Xn+1 = s | X0 = s0)

Now:
Prπππ

′
(Xn+1 = s, Yn+1 = a | X0 = s0) = d′n+1(s)(a)Prπππ

′
(Xn+1 = s | X0 = s0)

= Prπππ(Yn+1 = a | Xn+1 = s,X0 = s0)Prπππ
′
(Xn+1 = s | X0 = s0)

= Prπππ(Xn+1 = s, Yn+1 = a | X0 = s0)
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From policies to Markovian policies (2)

Eπππ(r(Xi, Yi)) =
∑

s∈S,a∈As

r(s, a)Prπππ(Xi = s, Yi = a)

Thus πππ′ achieves the same rewards that those of πππ.

Warning: the result is only valid for these kinds of rewards.

Can you find a kind of rewards for which it does not hold?
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A counter-example

The maximal (expected) reward: Eπππ(maxi∈N(r(Xi, Yi)))

s0

s1

s2

s3

s4

s5

0a

1a

0a

0a+ 1b

2a

0a

0.5a

0.5a

1a

1a

0.1a

0.9a+ 1b

1a

1a
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An introductive example (1)

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

uπππ0 is independent from πππ and so here: u∗0[s1] = −2 and u∗0[s2] = 1.5

Consider horizon t = 1. Then in state s1:

either one selects a and gets 5 + 0.3u∗0[s1] + 0.7u∗0[s2] = 5.45;

either one selects b and gets 10 + u∗0[s2] = 11.5;

or one performs a random choice getting 5.45α+ 11.5(1−α) with 0 < α < 1.

Thus u∗1[s1] = 11.5.

In state s2, one selects a and gets −1 + 0.1u∗0[s1] + 0.9u∗0[s2] = 0.15

The optimal decision rule d1 is: d1(s1) = b and d1(s2) = a
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An introductive example (2)

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

Consider horizon t = 2. Then in state s1:

either one selects a and gets 5 + 0.3u∗1[s1] + 0.7u∗1[s2] = 8.555;

either one selects b and gets 10 + u∗1[s1] = 10.15;

or one performs a random choice getting 8.555α+ 10.15(1− α)
with 0 < α < 1.

Thus u∗2[s1] = 10.15.

In state s2, one selects a and gets −1 + 0.1u∗1[s1] + 0.9u∗1[s2] = 0.285

The optimal decision policy is (d1, d1).
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The algorithm

This algorithm is based on dynamic programming.

It computes the optimal values optval and decisions optdec by increasing horizons.

For s ∈ S do optval[s, 0]← rend(s)
For i from 1 to n do

For s ∈ S do
best← −∞
For a ∈ As do
temp← r(s, a)
For s′ ∈ S do temp← temp+ p(s′|s, a)optval[s′, i− 1]
If best < temp then best← temp; optdec[s, i]← a
optval[s, i]← best

It performs in O(n|S|2|A|).
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Correctness of the algorithm
The proof is done by induction on the time horizon.

Assume optimality of πππn−1
def
= (dn−1, . . . , d1) (indexed in a backward way),

the policy computed by the algorithm for time horizon n− 1.

Let dn be the decision rule computed at the nth iteration.

Pick an arbitrary policy πππ′n
def
= d′n, . . . , d

′
1 and denote πππ′n−1

def
= d′n−1, . . . , d

′
1.

Let s ∈ S,
uπππn
n [s] = r(s, dn(s)) +

∑
s′∈S

p(s′|s, dn(s))u
πππn−1

n−1 [s′]

≥ r(s, d′n(s)) +
∑
a∈As

d′n(s)(a)
∑
s′∈S

p(s′|s, a)u
πππn−1

n−1 [s′]

(due to the iterative step of the algorithm)

≥ r(s, d′n(s)) +
∑
a∈As

d′n(s)(a)
∑
s′∈S

p(s′|s, a)u
πππ′n−1

n−1 [s′] = u
πππ′n
n [s]

(due to the inductive hypothesis)
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Preliminary observations and notations
Let πππ

def
= (d0, . . . , dn, . . .) be some Markovian policy. Then:

vπ
ππ
λ(s) = rd0(s) + λ

∑
s′∈S

Pd0 [s, s
′]rd1(s

′) + λ2
∑
s′∈S

∑
s′′∈S

Pd0 [s, s
′]Pd1 [s

′, s′′]rd2(s
′′) + · · ·

vπππλ =
∑
i∈N

λi

 ∏
0≤j<i

Pdj

 rdi

Let πππ
def
= d∞, this reward can be rewritten as: vπππλ =

∑
i∈N (λPd)

i
rd

Id− λPd is invertible and its inverse is
∑
i∈N (λPd)

i. So:

vπππλ = (Id− λPd)−1 rd and consequently vπππλ = rd + λPdv
πππ
λ

Let L be the mapping from RS to RS defined by:

L(v)[s]
def
= max

(
r(s, a) + λ

∑
s′∈S

p(s′|s, a)v[s′] | a ∈ As

)
L “selects” the best decision rule for time horizon 1 and terminal reward λv.
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Characterization of optimality (1)
Theorem Let v ∈ RS . Then:

If v ≤ L(v) then v ≤ v∗λ

If v ≥ L(v) then v ≥ v∗λ

If v = L(v) then v = v∗λ (as a consequence of the previous assertions)

Proof

Let v ≤ L(v).

By definition, there is a decision rule d such that: L(v) = rd + λPdv.

Thus:
v − λPdv ≤ rd

Applying the non negative matrix (Id− λPd)−1 to the inequality yields:

v ≤ (Id− λPd)−1rd = vd
∞
≤ v∗λ
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Characterization of optimality (2)
Let v ≥ L(v). Let πππ

def
= (d0, . . . , dn, . . .) be a Markovian policy.

v ≥ L(v) ≥ rd0 + λPd0v. By induction for n ≥ 1,

v ≥
∑

0≤i<n

λi

 ∏
0≤j<i

Pdj

 rdi + λn

 ∏
0≤j<n

Pdj

v

On the other hand,

vπππλ =
∑
i∈N

λi

 ∏
0≤j<i

Pdj

 rdi

Let us define B
def
= max(maxs(|v[s]|),maxs,a(|r(s, a)|).

Then for all s ∈ S and n ∈ N:

v[s]− vπππλ [s] ≥ −λnB(1 +
∑
i∈N

λi)

Letting n go to ∞, one gets: v ≥ vπππλ . Since πππ is arbitrary, one obtains: v ≥ v∗λ.
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Existence of a fixed-point

Let v and v′ be two vectors.

Let d be a decision rule such that L(v) = rd + λPdv.

Since L(v′) ≥ rd + λPdv
′:

L(v)[s]− L(v′)[s] ≤ λ (Pd(v − v′)) [s] ≤ λ||v − v′||∞

Thus: ||L(v)− L(v′)||∞ ≤ λ||v − v′||∞
So L is Lipschitz-continuous with Lipschitz constant equal to λ < 1.

Using the Banach fixed-point theorem (easy to prove),

given an arbitrary v0 and inductively defining vn+1
def
= L(vn).

L admits a (unique) fixed-point equals to v∗λ

limn→∞ vn = v∗λ

For all n, ||v∗λ − vn||∞ ≤ λn

1−λ ||v1 − v0||∞
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An example of convergence

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

Let λ
def
= 1

2 and v0
def
= (0, 0).

Then:

v1 = (10,−1)

v2 = (9.5,−0.95)

v3 = (9.525,−0.9525)

. . .

v∗λ = (9.5238095238,−0.9523809524)
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Optimal policies (1)

Let d be a decision rule in DMD that fulfills: v∗λ = rd + λPdv
∗
λ.

Then d∞ is an optimal policy since v∗λ = (Id− λPd)−1rd.

Theorem. There exist k ∈ N, 0 = λ0 < λ1 < · · · < λk < λk+1 = 1 and d0, . . . , dk
deterministic rules such that:

∀0 ≤ i ≤ k ∀λ ∈ [0, 1[ λ ∈ [λi, λi+1]⇒ d∞i is an optimal policy for λ

Proof

Let d be an arbitrary deterministic decision rule.

Since vd
∞

λ = (Id− λPd)−1rd, every item of vd
∞

λ is a rational fraction of λ
with poles outside [0, 1[.

Let us consider vd
∞

x [s] as a function of x.

Define Zero
def
= {λ | ∃d, d′ ∈ DMD ∃s ∈ S vd

∞

x [s] 6= vd
′∞

x [s] ∧ vd
∞

λ [s] = vd
′∞

λ [s]}
Then Zero is finite.
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Optimal policies (2)

Proof (continued)

Let I
def
=]a, b[ be an interval such that Zero ∩ I = ∅.

Pick an arbitrary c ∈ I and let d be an optimal decision rule w.r.t. to c.

We claim that d is optimal for the whole interval I.

Otherwise, due to the continuity of vd
∞

x [s],
there should exist λ ∈ I, d′ and s with vd

∞

x [s] 6= vd
′∞

x [s] ∧ vd
∞

λ [s] = vd
′∞

λ [s].

Furthermore again by continuity d is also optimal at a and b (when b 6= 1).

So the appropriate decomposition of [0, 1[ is the one of [0, 1[\Zero.

A policy πππ is Blackwell optimal
if there exists 0 ≤ λ0 < 1 such that πππ is optimal for every λ ∈ [λ0, 1[.

The theorem implies that
there exist deterministic stationary Blackwell optimal policies.
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The value iteration algorithm

The value iteration algorithm implements the fixed-point approach
while maintaining the current decision rule.

For s ∈ S do optval[s]← 0
Repeat
oldval← optval
For s ∈ S do
best← −∞
For a ∈ As
temp← r(s, a)
For s′ ∈ S do temp← temp+ λp(s′|s, a)oldval[s′]
If best < temp then best← temp; optdec[s]← a

optval[s]← best
stop← true

For s ∈ S do If |optval[s]− oldval[s]| > ε(1−λ)
2λ then stop← false

Until stop

Why ε(1−λ)
2λ ?
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Criterium of convergence
Proposition. Let d be the decision rule computed by the algorithm. Then:

||vd
∞

λ − v∗λ||∞ ≤ ε
Proof

Using Banach theorem, ||vn+1 − v∗λ||∞ ≤ λ
1−λ ||vn+1 − vn||∞ ≤ λ

1−λ
ε(1−λ)

2λ = ε
2

||vd
∞

λ − vn+1||∞ ≤ ||vd
∞

λ − (rd + λPdvn+1)||∞ + ||(rd + λPdvn+1)− vn+1||∞

= λ||Pdvd
∞

λ −Pdvn+1||∞+λ||Pdvn+1−Pdvn||∞ ≤ λ||vd
∞

λ −vn+1||∞+λ||vn+1−vn||∞

So

||vd
∞

λ − vn+1||∞ ≤
λ

1− λ
||vn+1 − vn||∞ ≤

ε

2

Thus:

||vd
∞

λ − v∗λ||∞ ≤ ||vd
∞

λ − vn+1||∞ + ||vn+1 − v∗λ||∞ ≤
ε

2
+
ε

2
= ε
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Principles of policy iteration

In the value iteration approach,
the current value is an approximation of the reward of the current policy.

Unlike value iteration approach,
the policy iteration approach maintains the exact reward of the current policy.

It tries to improve this reward using another decision rule.

More precisely, let d be the current decision rule.
Then a deterministic decision rule d′ is chosen such that:

L(vd
∞

λ ) = rd′ + λPd′v
d∞

λ

with d′ equal to d if possible.
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Properties of policy iteration

If d′ = d then d∞ is an optimal policy.

L(vd
∞

λ ) = rd + λPdv
d∞

λ = vd
∞

λ

So vd
∞

λ is the optimal value and d is an optimal decision rule.

If d′ 6= d then vd
′∞

λ > vd
∞

λ

One has:
rd′ + λPd′v

d∞

λ ≥ rd + λPdv
d∞

λ = vd
∞

λ

with at least one strict inequality.
Thus:

rd′ ≥ (Id− λPd′)vd
∞

λ

Applying (Id− λPd′)−1 (=
∑
i∈N (λPd′)

i)

vd
′∞

λ ≥ vd
∞

λ

Moreover since (Id− λPd′)−1 ≥ Id, the strict inequality is preserved.
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The policy iteration algorithm

For s ∈ S do optdec[s]← some a ∈ As
Repeat
stop← true
For s ∈ S do
rd[s]← r(s, optdec[s])
For s′ ∈ S do

If s = s′ then Md[s, s′]← 1− λp(s′|s, optdec[s])
Else Md[s, s′]← −λp(s′|s, optdec[s])

optval← LinearSolve(Md, rd)
For s ∈ S do
best← optval[s]
For a ∈ As do
temp← r(s, a)
For s′ ∈ S do temp← temp+ λp(s′|s, a)optval[s′]
If best < temp then best← temp; optdec[s]← a; stop← false

Until stop
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Convergence of policy iteration
Termination.

Since there is a finite number of deterministic policies
and such a policy is never visited twice the algorithm terminates.

However this number is Ω(|A||S|).

Comparison with value iteration.

Denote vn (resp. un) the reward
computed by policy (resp. value) iteration at the nth iteration.

Denote dvn (resp. dun) the decision rule
corresponding to the nth iteration of the policy (resp. value) iteration.

Assume that v0 = u0.

We claim that for all n, vn ≥ un.

vn+1 = rdvn+1 + λPdvn+1vn+1 ≥ rdvn+1 + λPdvn+1vn
(since vn+1 ≥ vn)

rdvn+1
+ λPdvn+1

vn ≥ rdun+1
+ λPdun+1

vn
(since rdvn+1

+ λPdvn+1
vn = L(vn))

rdun+1
+ λPdun+1

vn ≥ rdun+1
+ λPdun+1

un = un+1

(since vn ≥ un)
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Principles of linear programming

A linear program is:

the specification of an optimization problem;

where both constraints and objective are expressed by
linear expressions related to the variables of the problem.

different equivalent formulations are possible:
general, canonic or standard ones.

Maximize c · x such that Ax = b ∧ x ≥ 0

There are a priori three possible outputs:

The set of feasible solutions is empty.

The problem is unbounded, i.e. there exists a sequence of feasible solutions
{xn} such that limn→∞ c · xn =∞.

The problem admits an optimal value v, i.e. for all feasible solution x,
c · x ≤ v and for all ε > 0 there exists a feasible solution x with c · x ≥ v − ε.
In this case, there exists an optimal solution.
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Solving a linear program
The simplex algorithm first decides whether the problem
is empty or exhibits a basic solution:
a vertex of the polyhedron defined by the constraints.

The algorithm tries to improve a basic solution
by selecting a neighbour of the current vertex.

It stops when the solution is (locally) optimal
or the problem is unbounded.

It performs well in practice
but its worst case complexity is exponential.

x+y+z=1

The interior point approaches follow a path inside the
polyhedron of solutions toward an optimal solution.

They are mathematically involved
but perform in polynomial time.

x+y+z=1

In practice, whatever the algorithm
the number of constraints is the main factor of complexity.
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The dual problem
Assume that we have a linear combination y of the row vectors of A,

d
def
= yA

(
=
∑
i∈I

y[i]A[i,−]

)
such that d ≥ c

Then for all feasible solution x,

c · x ≤ d · x =
∑
i∈I

y[i](A[i,−] · x) =
∑
i∈I

y[i]b[i]

Otherwise stated,
∑
i∈I y[i]b[i] is an upper bound of the optimal value.

The dual problem : Minimize y · b such that yA ≥ c ∧ y ∈ RI

Duality Theorem. Let P be a linear problem and D be its dual. Then:

If P is unbounded then D does not admit a feasible solution.

If D is unbounded then P does not admit a feasible solution.

P admits an optimal solution if and only if D admits an optimal solution.
In that case, the optimal values are equal.
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A linear programming characterization

The previous characterization

Any v that fulfills v ≥ L(v) is an upper bound of v∗λ.

v∗λ also fulfills this inequation.

A linear programming reformulation

Minimize
∑
s∈S

αsv[s]

subject to ∀s ∈ S ∀a ∈ As v[s]−
∑
s′∈S

λp(s′|s, a)v[s′] ≥ r(s, a)

the variables are the components of vector v.

the αs’s are arbitrary constants that fulfill: ∀s 0 < αs
and

∑
s∈S αs = 1 (this equality introduced only for probabilistic reasoning)

The problem has
∑
s∈S |As| constraints.
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The dual characterization

Dual linear program

Maximize
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

subject to ∀s ∈ S
∑
a∈As

x(s, a)−
∑
s′∈S

∑
a∈As′

λp(s|s′, a)x(s′, a) = αs

∀s ∈ S ∀a ∈ As x(s, a) ≥ 0

The variables are the x(s, a)’s.

Observation: a feasible solution fulfills for all s,
∑
a∈As

x(s, a) ≥ αs > 0.

The dual problem has |S| constraints.
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Decision rules and feasible solutions
• Let d be a Markovian decision rule. Then xd is defined by:

xd(s, a)
def
= d(s)(a)

∑
s′∈S

αs′
∑
n∈N

λn(Pd)
n[s′, s]

Probabilistic interpretation

For all s, a, xd(s, a) is the average discounted number of times
that action a is selected in state s
knowing that the initial distribution is given by {αs};∑
s∈S

∑
a∈As

r(s, a)xd(s, a) is the expected discounted reward of policy d∞

knowing that the initial distribution is given by {αs};
For all s,

∑
a∈As

xd(s, a) ≥ αs > 0.

xd is a feasible solution of the dual linear program

• Let x be a feasible solution of the dual linear program.

Then the decision rule dx is defined by by: dx(s)(a)
def
= x(s,a)∑

a∈As
x(s,a) .

dxd
= d and xdx = x
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Plan

Presentation

Finite Horizon Analysis

Discounted Reward Analysis

4 Average Reward Analysis
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Different kinds of limits

Let {un}n∈N be a sequence of reals (real vectors, real matrices, etc.). Then:

{un}n∈N is Cesaro convergent to a limit l if limn→∞
1

n+1

∑
i≤n ui = l.

One denotes it by un →c l.

{un}n∈N is Abel convergent to a limit l if for all 0 ≤ λ < 1,

u(λ)
def
=
∑
n∈N unλ

n exists and limλ↑1(1− λ)u(λ) = l.
One denotes it by un →a l.

Observe the analogy with the discounted and average rewards.

Let {un}n∈N be a sequence of reals.

If un → l then un →c l.

If un →c l then un →a l.
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Asymptotic behaviour of a finite DTMC
Let P be a stochastic matrix. Then {Pn} is Cesaro convergent to a stochastic
matrix, denoted P∗ and one has:

P∗P = PP∗ = P∗P∗ = P∗

Proof. Let P̃n
def
= 1

n

∑
0≤i<nP

i for n > 0.

P̃n is a stochastic matrix thus the sequence {P̃n} is bounded.

Pick a sequence of indices n0 < n1 < · · · such that L
def
= limk→∞ P̃nk

exists.

P̃nP = PP̃n = P̃n +
1

n
(Pn − Id)

Applying these equalities to nk letting k go to ∞ yields: LP = PL = L

Let L′ be another limit of a subsequence of {P̃n}. Then: PL′ = L′P = L′.
By iteration, PnL′ = L′Pn = L′ for all n.
By linear combination, P̃nL

′ = L′P̃n = L′ for all n.
Applying this equality for nk and letting k go to ∞ yields L′L = LL′ = L′.
Swapping L and L′ yields LL′ = L′L = L. Thus L′ = L.

So P̃n is convergent and the limit is stochastic. (why?)
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Fundamental and deviation matrices

Let P be a stochastic matrix. Then Id−P + P∗ is invertible and its inverse called
the fundamental matrix and denoted Z fulfills:∑n

i=0(P−P∗)i →c Z

The deviation matrix D is defined by D
def
= Z−P∗.

Probabilistic interpretation in the aperiodic case

Pn → P∗

Pn −P∗ = (P−P∗)n implying that the greatest module
of eigenvalues of P−P∗ is smaller than 1.

So Z = Id +
∑
n≥1(Pn −P∗) and D =

∑
n∈N(Pn −P∗)

D[s, s′] is the limit when n goes to ∞ of the difference between:

1 the mean number of visits of s′ until time n starting from s;

2 the mean number of visits of s′ until time n starting from
the steady-state distribution reached when the initial state is s.
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Properties of the deviation matrix
Let P be a stochastic matrix. Its deviation matrix D fulfills:

P∗D = DP∗ = 0
(no deviation starting from a stationary distribution)

(Id−P)D = Id−P∗

(decomposing deviation between the initial and the remaining instants)

Application to the average reward.

Let d be a decision rule. Then the average reward of d∞ is:

gd
∞

= lim
n→∞

1

n

n−1∑
i=0

Pi
drd = P∗drd

Define hd
∞ def

= Ddrd. Then:

gd
∞

= Pdg
d∞ and gd

∞
+ hd

∞
= Pdh

d∞ + rd
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Characterization of optimality

1. Establish a condition for upper bounds and a conditional characterization

2. Relate average and discounted values

3. Prove that a Blackwell policy meets the characterization (using 1 and 2)
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A first bound of the optimal value
Idea: Transforming gd

∞
= Pdg

d∞ , gd
∞

+ hd
∞

= Pdh
d∞ + rd into inequations.

Assume there exist two vectors g,h over states such that for all d ∈ DMD :

g ≥ Pdg and g + h ≥ Pdh + rd

Then: g ≥ g∗+ .

Proof. Let πππ = (d1, d2, . . .) be a Markovian policy. Then:
g ≥ rdk + (Pdk − Id)h

Then one applies the first inequation with dk−1 getting:
g ≥ Pdk−1

g ≥ Pdk−1
rdk + Pdk−1

(Pdk − Id)h

Applying iteratively the first inequation with Pdk−2
, . . . ,Pd1 one obtains:

g ≥ Pd1 . . .Pdk−1
rdk + Pd1 . . .Pdk−1

(Pdk − Id)h

Summing this inequation for k from 1 to n, one gets:
ng ≥ vπππn + (Pd1 . . .Pdn−1

Pdn − Id)h

Since the last term is bounded by ||h||, dividing by n and letting n go to ∞ yields:
g ≥ lim supn→∞

1
nv

πππ
n = gπππ+



53/63

Refining the bound

Assume there exists two vectors g,h such that for all d ∈ DMD , for all s ∈ S:

either g[s] >
∑
s′∈S Pd[s, s

′]g[s′]

or g[s] =
∑
s′∈S Pd[s, s

′]g[s′] ∧ g[s] + h[s] ≥
∑
s′∈S Pd[s, s

′]h[s′] + rd[s]

Then g ≥ g∗+.

Proof. Let g,h be a solution of this system.

We claim that g,h +Mg for M large enough fulfil the previous hypotheses.

Consider the possibly unsatisfied equation:

g(s) + (h[s] +Mg[s])
?
≥
∑
s′∈S

Pd[s, s
′](h[s′] +Mg[s′]) + rd[s]

for which g[s] >
∑
s′∈S Pd[s, s

′]g[s′]

Mg[s] occurs on the left side.∑
s′∈S Pd[s, s

′]Mg[s′] occurs on the right side.

So there exists M large enough that satisfies such an equation.
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A conditional characterization

Assume that g and h fulfill:

∀s ∈ S g[s] = max
a∈As

(∑
s′∈S

p(s′|s, a)g[s′]

)

∀s ∈ S g[s] + h[s] = max
a∈Bs

(∑
s′∈S

p(s′|s, a)h[s′] + r(s, a)

)

where Bs
def
= arg max

a∈As

(∑
s′∈S

p(s′|s, a)g[s′]

)
Then g = g∗+ = g∗− and it is obtained by a stationary policy.
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Proof of the conditional characterization

(g,h) fulfills the requirements to be a bound. So: g ≥ g∗+.

Define d by choosing some optimal d(s) ∈ Bs.
The equation system can be rewritten:

g = Pdg and g + h = Pdh + rd

Using the second equation, one gets: g = rd + (Pd − Id)h

Applying the first equation: g = Pdg = Pdrd + Pd(Pd − Id)h

By iteration: g = Pkdrd + Pk−1d (Pd − Id)h

Summing, one gets: ng = ud
∞

n + (Pnd − Id)h

Since the last term is bounded by ||h||, dividing by n and letting n go to ∞ yields:

g = lim
n→∞

1

n
ud
∞

n = gd
∞

+ = gd
∞

−
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Relating average and discounted values
A limit relation

Let d ∈ DMD , then:

gd
∞

− = gd
∞

+ = P∗drd = lim
λ↑1

(1− λ)vd
∞

λ
def
= gd

∞

due to Cesaro (and so Abel) convergence towards P∗d

The exact relation

Let us define ρ
def
= 1−λ

λ and assume that ||Dd||
1+||Dd|| < λ < 1 (so ρ||Dd|| < 1) then:

vd
∞

λ =
1

1− λ

(
P∗drd −

∞∑
n=1

(−ρDd)
nrd

)

since the right hand term fulfills equation (Id− λPd)X = rd

whose single solution is vd
∞

λ (using properties of P∗d and Dd).

The first-order relation

vd
∞

λ =
1

1− λ
P∗drd + Ddrd +O(1− λ)
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Existence of optimal policies

Let d∞ be (Blackwell) optimal for λ ∈ [λ0, 1[. Then (P∗drd,Ddrd) fulfills the
characterization and gd∞ = P∗drd is the optimal value.

Proof.

By optimality: ∀s ∈ S ∀a ∈ As vd
∞

λ [s] ≥ r(s, a) + λ
∑
s′∈S p(s

′|s, a)vd
∞

λ [s′]

• Using first-order development one gets:

1
1−λ

(
(P∗drd)[s]−

∑
s′∈S p(s

′|s, a)(P∗drd)[s
′]
)

+

(Ddrd)[s]− r(s, a)−
∑
s′∈S p(s

′|s, a)(Ddrd −P∗drd)[s
′] +O(1− λ) ≥ 0

• So: (P∗drd)[s]−
∑
s′∈S p(s

′|s, a)(P∗drd)[s
′] ≥ 0

• When equality holds:

(Ddrd)[s]− r(s, a)−
∑
s′∈S p(s

′|s, a)(Ddrd −P∗drd)[s
′] ≥ 0

Implying: (Ddrd)[s]− r(s, a)−
∑
s′∈S p(s

′|s, a)(Ddrd)[s
′] + (P∗drd)[s] ≥ 0
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Policy iteration: principles

As seen for the discounted reward, the policy approach is based on two key items.

Computing values provided by a stationary policy d∞.
Here we are going to compute:

1 the reward P∗drd;

2 the second term of the above Taylor development Ddrd.

Designing a rule that:

1 either identifies an optimal stationary policy;

2 or provides a way to improve it.
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Values associated with a policy

Let d be a decision rule and consider the following equation system where the
variables are vectors x, y and z.

(Id−Pd)x = 0 (1)

x + (Id−Pd)y = rd (2)

y + (Id−Pd)z = 0 (3)

Then:

Vectors P∗drd, Ddrd and −D2
drd are solutions of this system.

Any (x,y, z) solution of this system fulfills x = P∗drd and y = Ddrd.

Thus one computes P∗drd and Ddrd in polynomial time.
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Correctness of the equation system

Let us check that P∗drd, Ddrd and −D2
drd are solutions of this system.

• (Id−Pd)P
∗
drd = (P∗d −P∗d)rd = 0

• P∗drd + (Id−Pd)Ddrd = (P∗d + (Id−Pd)Dd) rd = rd

• Ddrd − (Id−Pd)D
2
drd = (Id− (Id−Pd)Dd)Ddrd = P∗dDdrd = 0

Let x, y and z be a solution of this system.

From (1), Pdx = x which entails P∗dx = x.

So: x = P∗dx = P∗drd −P∗d(Id−Pd)y = P∗drd using (2)

0 = P∗d (y + (Id−Pd)z) = P∗dy using (3)

Thus using second equation of the system:

rd −P∗drd = (Id−Pd)y = (Id−Pd + P∗d)y which can be rewritten as:

y = (Id−Pd + P∗d)
−1(Id−P∗d)rd = (Dd + P∗d)(Id−P∗d)rd = Ddrd
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Illustration

s1 s2

5a+ 10b −a

−2 1.5

0.7a+ 1b

0.1a

0.3a 0.9a

Let us study the (already described) policies d and d′.

Id−Pd =

(
1 −1
−0.1 0.1

)
and Id−Pd′ =

(
0.7 −0.7
−0.1 0.1

)
The range of Id−Pd is α(1,−0.1). So x = α(1,−0.1) + (10,−1) for some α.

Furthermore x is in the kernel of Id−Pd.

So we get α+ 10 = −0.1α− 1 yielding α = −10 and x = (0, 0).

The range of Id−Pd′ is α(0.7,−0.1). So x = α(0.7,−0.1) + (5,−1) for some α.

Furthermore x is in the kernel of Id−Pd′ .

So we get 0.7α+ 5 = −0.1α− 1 yielding α = − 15
2 and x = (− 1

4 ,−
1
4 ).
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Improving a policy
Let d be a decision rule and s be a state. Define:

Improve(d, s)
def
= {a ∈ As | (P∗drd)[s] <

∑
s′∈S

p(s′|s, a)(P∗drd)[s
′]}

∪ {a ∈ As | (P∗drd)[s] =
∑
s′∈S

p(s′|s, a)(P∗drd)[s
′]

∧ ((P∗d + Dd)rd)[s] < r(s, a) +
∑
s′∈S

p(s′|s, a)(Ddrd)[s
′]}

Then if for all s, Improve(d, s) = ∅ then d∞ is average optimal.

Otherwise let d′ be any policy such that for all s,

1 Improve(d, s) = ∅ implies d′(s) = d(s);

2 Improve(d, s) 6= ∅ implies d′(s) ∈ Improve(d, s).

Then P∗drd ≤ P∗d′rd′ and there exists λ0 such that for all λ0 < λ, vd
∞

λ < vd
′∞

λ .

The proof of improvement is based on the first-order development

and the analysis of policy πππ
def
= (d′, d, d, . . .).
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Linear programming

Using bounding results, for every pair of vectors (g,h) such that for all d ∈ DMD ,
g ≥ Pdg and g + h ≥ Pdh + rd one gets: g ≥ g∗.

For any Blackwell optimal policy d∞, (P∗drd,Ddrd +MP∗drd) is a solution of such
a system as soon as M is large enough.

Thus the following linear program has its g component equal to the optimal
expected average reward.

Primal Linear Program

Minimize
∑
s∈S

αsg[s] subject to ∀s ∈ S ∀a ∈ As,

g[s]−
∑
s′∈S

p(s′|s, a)g[s′] ≥ 0 and g[s] + h[s]−
∑
s′∈S

p(s′|s, a)h[s′] ≥ r(s, a)

The variables are vectors g and h while the αs’s are positive constants.

As for the discounted case, solving the dual program is preferred.
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