Probabilistic Aspects of Computer Science: Probabilistic Automata

Serge Haddad

LMF, ENS Paris-Saclay & CNRS & INRIA

MPRI M1

- Presentation
- Properties of Stochastic Languages
- 3 Decidability Results

Plan

Presentation

Properties of Stochastic Languages

Decidability Results

An introductive example

Planning holidays in a foreign country

- 1. Choosing which train or plane to use;
- 2. Renting an house or a room in an hotel;
- 3. Buying tickets for some exhibitions, etc.

Usually these actions must be planned before the holidays.

Thus one looks for an *a priori* optimal policy that maximizes the probability to *reach* a goal.

Formalisation

The probability of success of lowcost \cdot internet \cdot seeall is $\frac{27}{64}$.

Probabilistic automata

Probabilistic Automata (PA) are a variation of MDP where:

- ▶ The set of possible actions is the same in every state.
- There are no rewards.
- There is a subset of final states.

More formally, a PA $\mathcal{A} = (Q, A, \{\mathbf{P}_a\}_{a \in A}, \pi_0, F)$ is defined by:

- Q, the finite set of states;
- A, the finite alphabet;
- ▶ For all $a \in A$, P_a , a probability transition matrix over S;
- \bullet π_0 , the initial distribution over states and $F \subseteq Q$ the final states.

Illustration

- ▶ $A = \{a, b\};$
- $Q = \{q_0, q_1\}, F = \{q_1\};$
- \bullet $\pi_0[q_0] = 1.$

An edge from a state to another one is labelled by a vector of transition probabilities indexed by A. The vector is denoted by a formal sum.

For instance, the transition from q_0 to itself is labelled by 1a + 0.5b means that:

- when a is chosen in state q_0 , the probability that the next state is q_0 , $\mathbf{P}_a[q_0, q_0]$, is equal to 1.
- when b is chosen in state q_0 , the probability that the next state is q_0 , $\mathbf{P}_b[q_0, q_0]$, is equal to 0.5.

Policies in PA

Words are policies. When some finite word $w \stackrel{\text{def}}{=} a_1 \dots a_n$ is selected, we are interested in the probability to be in a final state using w as a policy.

Given \mathcal{A} a PA and $w \stackrel{\text{def}}{=} a_1 \dots a_n \in A^*$ a word, the *acceptance probability* of w by \mathcal{A} is defined by:

$$\mathbf{Pr}_{\mathcal{A}}(w) \stackrel{\mathsf{def}}{=} \sum_{q \in Q} \pi_{\mathbf{0}}[q] \sum_{q' \in F} \left(\prod_{i=1}^{n} \mathbf{P}_{a_i} \right) [q, q']$$

Notation. Given a word $w \stackrel{\text{def}}{=} a_1 \dots a_n$, the probability matrix \mathbf{P}_w is defined by $\mathbf{P}_w \stackrel{\text{def}}{=} \prod_{i=1}^n \mathbf{P}_{a_i}$. In particular $\mathbf{P}_{\varepsilon} = \mathbf{Id}$.

With these notations:

$$\mathbf{Pr}_{\mathcal{A}}(w) = \pi_0 \mathbf{P}_w \mathbf{1}_F^T$$

where $\mathbf{1}_F$ is the indicator vector of subset F.

Illustration

Observe that for all w, $\mathbf{Pr}_{\mathcal{A}}(w) = \mathbf{Pr}(\mathsf{to} \mathsf{ be in } q_1 \mathsf{ after following policy of } w)$ and $1 - \mathbf{Pr}_{\mathcal{A}}(w) = \mathbf{Pr}(\mathsf{to} \mathsf{ be in } q_0 \mathsf{ after following policy of } w)$

•
$$\mathbf{Pr}_{\mathcal{A}}(\varepsilon) = 0$$
, $\mathbf{Pr}_{\mathcal{A}}(a) = \frac{1}{2}\mathbf{Pr}_{\mathcal{A}}(\varepsilon) = 0$

$$\mathbf{Pr}_{\mathcal{A}}(ab) = \mathbf{Pr}_{\mathcal{A}}(a) + \frac{1}{2}(1 - \mathbf{Pr}_{\mathcal{A}}(a)) = \frac{1}{2}$$

$$\mathbf{Pr}_{\mathcal{A}}(abb) = \mathbf{Pr}_{\mathcal{A}}(ab) + \frac{1}{2}(1 - \mathbf{Pr}_{\mathcal{A}}(ab)) = \frac{3}{4}$$

$$\mathbf{Pr}_{\mathcal{A}}(abba) = \frac{1}{2} \mathbf{Pr}_{\mathcal{A}}(abb) = \frac{3}{8}$$

More generally, the following recursive equations hold:

$$\mathbf{Pr}_{\mathcal{A}}(wa) = \frac{1}{2}\mathbf{Pr}_{\mathcal{A}}(w) \text{ and } \mathbf{Pr}_{\mathcal{A}}(wb) = \frac{1}{2}(1 + \mathbf{Pr}_{\mathcal{A}}(w))$$

from which one can derive an explicit expression of the acceptance probability:

$$\mathbf{Pr}_{\mathcal{A}}(a_1 \dots a_n) = \sum_{i=1}^{n} 2^{i-n-1} \cdot \mathbf{1}_{a_i=b}$$

Which word maximizes the acceptance probability?

Stochastic languages

We are interested in "useful" policies.

This directly leads to the introduction of stochastic languages. Let:

- $ightharpoonup \mathcal{A}$ be a probabilistic automaton;
- $\theta \in [0,1]$ be a threshold;
- $\blacktriangleright\bowtie\in\{<,\leq,>,\geq,=,\neq\}$ be a comparison operator.

Then $L_{\bowtie \theta}(\mathcal{A})$ is defined by:

$$L_{\bowtie \theta}(\mathcal{A}) = \{ w \in A^* \mid \mathbf{Pr}_{\mathcal{A}}(w) \bowtie \theta \}$$

For expressiveness and decidability issues, one also needs the following definitions.

- A rational PA is a PA with probability distributions over \mathbb{Q}^Q .
- ► A rational stochastic language is a stochastic language specified by a rational PA and a rational threshold.

Counting with PA

(a succinct representation with an omitted absorbing rejecting state)

Any word z different from a^mb^n with m>0, n>0 cannot be accepted.

Let $w \stackrel{\text{def}}{=} a^m b^n$ with m > 0, n > 0. w can be accepted by:

- ▶ a path q_0, q_1^m, q_2^n with probability $\frac{1}{2^n}$;
- ▶ or by a family of paths q_0, q_3^r, q_4^s, q_5^n with 0 < r, s and r + s = m with cumulated probability $\frac{1}{2} \frac{1}{2^m}$.

Summing, one obtains: $\frac{1}{2} + \frac{1}{2^n} - \frac{1}{2^m}$.

Thus:
$$\mathcal{L}_{=0.5}(\mathcal{A}) = \{a^n b^n \mid n > 0\}$$

Plan

Presentation

Properties of Stochastic Languages

Decidability Results

Expressiveness problems

Provide a minimal set of comparison operators and thresholds.

Position the stochastic languages w.r.t. the Chomsky hierarchy.

Study the closure properties of the stochastic languages.

A single threshold is enough

The value α depends on $\theta \neq \frac{1}{2}$ in the following way:

▶ If $\theta > \frac{1}{2}$ then $q_0 \notin F$ and $\alpha \stackrel{\mathsf{def}}{=} \frac{1}{2\theta}$ so that for all $w \in A^*$,

$$\mathbf{Pr}_{\mathcal{A}'}(w) = \frac{1}{2\theta} \mathbf{Pr}_{\mathcal{A}}(w)$$

Thus $w \in L_{\bowtie \frac{1}{2}}(\mathcal{A}')$ iff $w \in L_{\bowtie \theta}(\mathcal{A})$.

▶ If $\theta < \frac{1}{2}$ then $q_0 \in F$ and $\alpha \stackrel{\mathrm{def}}{=} \frac{1}{2(1-\theta)}$ so that for all $w \in A^*$,

$$\mathbf{Pr}_{\mathcal{A}'}(w) = \frac{1-2\theta + \mathbf{Pr}_{\mathcal{A}}(w)}{2(1-\theta)}$$

Thus $w \in L_{\bowtie \frac{1}{2}}(\mathcal{A}')$ iff $w \in L_{\bowtie \theta}(\mathcal{A})$.

Getting rid of (dis)equality

Given a PA A, we build A' as follows.

- ▶ The set of states $Q' \stackrel{\text{def}}{=} Q \times Q$;
- $\mathbf{P}'_a[(q_1, q_2), (q'_1, q'_2)] \stackrel{\text{def}}{=} \mathbf{P}_a[q_1, q'_1] \mathbf{P}_a[q_2, q'_2];$
- \bullet $\pi'_0[q_1, q_2] \stackrel{\text{def}}{=} \pi_0[q_1]\pi_0[q_2]$ and $F' \stackrel{\text{def}}{=} F \times (Q \setminus F)$.

Once a word w is selected,

the two components of the DES behave independently and so:

$$\mathbf{Pr}_{\mathcal{A}'}(w) = \mathbf{Pr}_{\mathcal{A}}(w)(1 - \mathbf{Pr}_{\mathcal{A}}(w))$$

Consequently $\mathbf{Pr}_{\mathcal{A}'}(w) \leq \frac{1}{4}$ with equality iff $\mathbf{Pr}_{\mathcal{A}}(w) = \frac{1}{2}$. Thus:

$$L_{>\frac{1}{4}}(\mathcal{A}') = L_{=\frac{1}{2}}(\mathcal{A})$$

Getting rid of "lower (or equal) than"

Given a PA A, we build A' by complementing the final states. Then:

$$\mathbf{Pr}_{\mathcal{A}'}(w) = 1 - \mathbf{Pr}_{\mathcal{A}}(w)$$

And so:

$$L_{>\theta}(\mathcal{A}') = L_{<\theta}(\mathcal{A})$$

$$L_{>\theta}(\mathcal{A}') = L_{<\theta}(\mathcal{A})$$

The Chomsky hierarchy

Class	Grammar	Device	
Regular language	$L \to aR a \varepsilon$	Finite automaton	
	with $L,R\in\Delta$, $a\in\Sigma$		
Algebraic language	$L o R_1 \dots R_n$ with	Stack automaton	
	$L \in \Delta$ and $R_i \in \Delta \cup \Sigma$		
Context-sensitive	$L_1 \dots L_m \to R_1 \dots R_n$	Non determ. Turing	
language	$m \leq n$, $(S \rightarrow \varepsilon)$	machine performing in	
	with $L_i, R_j \in \Delta \cup \Sigma$	linear space	
Recursively enumerable	$L_1 \dots L_m \to R_1 \dots R_n$	Turing machine	
language	avec $L_i, R_j \in \Delta \cup \Sigma$		

Revisiting the Chomsky hierarchy

Non recursively enumerable languages

Define $v_a \stackrel{\text{def}}{=} 0$ and $v_b \stackrel{\text{def}}{=} 1$.

The acceptance probability of $w_1 \dots w_n$ is the binary number $0.v_{w_n} \dots v_{w_1}$. So $\mathcal{L}_{>\theta}(\mathcal{A})$ is the set of representations of numbers (with finite binary development) greater than θ .

Thus given $0 \le \theta < \theta' \le 1$,

$$\mathcal{L}_{>\theta'}(\mathcal{A}) \subsetneq \mathcal{L}_{>\theta}(\mathcal{A})$$

So there is an uncountable number of stochastic languages implying that "most" of them are non recursively enumerable.

This result does not hold for rational stochastic languages.

Regular versus stochastic languages

A deterministic automaton is a stochastic automaton with probabilities in $\{0,1\}$.

Thus regular languages are stochastic languages.

The language $\{a^nb^n \mid n>0\}$ is a rational stochastic non regular language.

Non stochastic context-free languages (1)

$$L \stackrel{\mathsf{def}}{=} \{a^{n_1}ba^{n_2}b\dots a^{n_k}ba^* \mid \exists i > 1 \ n_i = n_1\}$$
 is a non stochastic context-free language.

Proof.

L is context-free. Use a non deterministic automaton with a counter.

- \blacktriangleright With a counter one counts n_1 the number of a's until the first occurrence of b.
- ▶ Then one guesses an occurrence of *b* and decrements the counter by the occurrences of *a* until the next occurrence of *b*.
- ▶ If the counter is zero the word is accepted.

Assume that (1)
$$L = L_{>\theta}(A)$$
 or (2) $L = L_{>\theta}(A)$.

Let $\sum_{i=0}^{n} c_i X^i$ be the minimal polynomial of \mathbf{P}_a .

Since 1 is an eigenvalue of P_a , one gets $\sum_{i=0}^n c_i = 0$ and there are positive and negative coefficients.

By definition, $\sum_{i=0}^{n} c_i \mathbf{P}_{a^i} = 0$ and so for any word w, $\sum_{i=0}^{n} c_i \mathbf{P}_{a^i w} = 0$.

Non stochastic context-free languages (2)

Proof (continued).

Let $Pos = \{i \mid 0 \le i \le n \land c_i > 0\}$ and $NonPos = \{i \mid 0 \le i \le n \land c_i \le 0\}$. Write Pos as $\{i_1, \ldots, i_k\}$.

Choose $w \stackrel{\mathsf{def}}{=} ba^{i_1}b \dots ba^{i_k}b$.

Case
$$L=L_{>\theta}(\mathcal{A})$$
. Let $0\leq i\leq n$, by definition of L ,
$$\pi_0\mathbf{P}_{a^iw}\mathbf{1}_F^T>\theta \text{ iff } i\in\{i_1,\ldots,i_k\}$$

$$0 = \sum_{i=0}^{n} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T = \sum_{i \in Pos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T$$

$$> (\sum_{i \in Pos} c_i) \theta + (\sum_{i \in NonPos} c_i) \theta = (\sum_{i=0}^{n} c_i) \theta = 0$$

leading to a contradiction.

Case
$$L=L_{\geq \theta}(\mathcal{A})$$
. Let $0\leq i\leq n$, by definition of L ,
$$\pi_0\mathbf{P}_{a^iw}\mathbf{1}_F^T\geq \theta \text{ iff } i\in\{i_1,\ldots,i_k\}$$

So:
$$0 = \sum_{i=0}^{n} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T = \sum_{i \in Pos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T + \sum_{i \in NonPos} c_i \mathbf{1}_F + \sum_{i \in NonPos} c_i$$

leading to a contradiction.

Non context-free stochastic languages (1)

$$L \stackrel{\mathsf{def}}{=} \{ a^n b^n c^n \mid n > 0 \}$$

is a non context-free rational stochastic language.

Proof.

Using Ogden's lemma it can be easily proved that L is not context-free.

Observe that
$$L=L_1\cap L_2$$
 with $L_1\stackrel{\mathrm{def}}{=}\{a^nb^nc^+\mid n>0\}$ and $L_2\stackrel{\mathrm{def}}{=}\{a^+b^nc^n\mid n>0\}.$

So we prove that:

- for $i \in \{1,2\}$, $L_i = L_{=\frac{1}{2}}(\mathcal{A}_i)$ for some \mathcal{A}_i
- the family of languages $\{L=L_{=\frac{1}{2}}(\mathcal{A})\}_{\mathcal{A}}$ is closed under intersection.

Non context-free stochastic languages (2)

Proof (continued).

$$L_{=\frac{1}{2}}(\mathcal{A}) = \{a^n b^n c^+ \mid n > 0\}$$

Non context-free stochastic languages (3)

Proof (ended).

Let $L_{=\frac{1}{2}}(\mathcal{A}_1)$ and $L_{=\frac{1}{2}}(\mathcal{A}_2)$ be two arbitrary languages.

Using the previous construction, let \mathcal{A}_1' and \mathcal{A}_2' be automata such that:

- ▶ For any word w, $\mathbf{Pr}_{\mathcal{A}'_i}(w) \leq \frac{1}{4}$;
- $L_{=\frac{1}{2}}(\mathcal{A}_i) = L_{=\frac{1}{4}}(\mathcal{A}'_i).$

One builds A as follows:

- ▶ The set of states $Q \stackrel{\text{def}}{=} Q'_1 \times Q'_2$;
- $\mathbf{P}_a[(q_1, q_2), (q_1', q_2')] \stackrel{\mathsf{def}}{=} (\mathbf{P}_1')_a[q_1, q_1'] (\mathbf{P}_2')_a[q_2, q_2'];$
- $\qquad \qquad \pi_0'[q_1,q_2] \stackrel{\mathsf{def}}{=} \pi_{1,0}[q_1]\pi_{2,0}[q_2] \text{ and } F \stackrel{\mathsf{def}}{=} F_1' \times F_2'.$

By construction, $\mathbf{Pr}_{\mathcal{A}}(w) = \mathbf{Pr}_{\mathcal{A}'_1}(w)\mathbf{Pr}_{\mathcal{A}'_2}(w)$.

So for all word w, $\mathbf{Pr}_{\mathcal{A}}(w) \leq \frac{1}{16}$ and $\mathbf{Pr}_{\mathcal{A}}(w) = \frac{1}{16}$ iff $\mathbf{Pr}_{\mathcal{A}_1'}(w) = \mathbf{Pr}_{\mathcal{A}_2'}(w) = \frac{1}{4}$.

Consequently,

$$L_{=\frac{1}{16}}(\mathcal{A}) = L_{=\frac{1}{2}}(\mathcal{A}_1) \cap L_{=\frac{1}{2}}(\mathcal{A}_2)$$

Inclusion in context-sensitive languages

The class of rational stochastic languages is strictly included in the class of context-sensitive languages.

Proof.

Context-sensitive languages are the languages for which membership checking can be performed by a non deterministic procedure in linear space.

A deterministic procedure in linear space (far from being optimal) Pre-computation in constant space.

- ► Compute the l.c.m., say b, of denominators of θ , items of matrices $\{\mathbf{P}_a\}_{a\in A}$, and items of vector π_0 .
- ▶ Build the integer matrices $\mathbf{P}'_a \stackrel{\text{def}}{=} b\mathbf{P}_a$ and vector $\pi'_0 \stackrel{\text{def}}{=} b\pi_0$.

For word $w \stackrel{\text{def}}{=} a_1 \dots a_n$, the problem becomes $\pi'_0(\prod_{i=1}^n \mathbf{P}'_{a_i})\mathbf{1}_F^T \bowtie \theta b^{n+1}$?

- ▶ Compute θb^{n+1} in space O(n).
- ► Compute $\mathbf{v} \stackrel{\text{def}}{=} \pi_0'(\prod_{i=1}^n \mathbf{P}_{a_i}')$ by initializing \mathbf{v} to π_0' and then iteratively multiply it by \mathbf{P}_{a_i}' . The vectors are bounded by b^{n+1} . So this is performed in space O(n).
- ▶ The sum and comparison are also done in space O(n).

Operations with regular languages

The family of (rational) stochastic languages is closed under intersection and union with regular languages.

Proof.

Let $L_{\bowtie \theta}(\mathcal{A}_1)$ be a (rational) stochastic language (with $\bowtie \in \{>, \geq\}$) and $L_{=1}(\mathcal{A}_2)$ be a regular language.

$$L_{\bowtie \frac{\theta}{2}}(\mathcal{A}) = L_{\bowtie \theta}(\mathcal{A}_1) \cup L_{=1}(\mathcal{A}_2) \text{ and } L_{\bowtie \frac{1+\theta}{2}}(\mathcal{A}) = L_{\bowtie \theta}(\mathcal{A}_1) \cap L_{=1}(\mathcal{A}_2)$$

A stochastic language

$$L_{=\frac{1}{2}}(\mathcal{A}) = \{a^{m_1}b \dots ba^{m_k}b \mid 1 < k \land m_1 = m_k\}$$

since
$$\mathbf{Pr}_{\mathcal{A}}(a^{m_1}b\dots ba^{m_k}b) = \frac{1}{2}\left(\left(\frac{1}{2}\right)^{k+m_k-1} + 1 - \left(\frac{1}{2}\right)^{k+m_1-1}\right)$$

Concatenation

The family of (rational) stochastic languages is not closed under concatenation with a regular language.

Proof.

Let
$$L \stackrel{\text{def}}{=} \{a^{m_1}b \dots ba^{m_k}b \mid 1 < k \wedge m_1 = m_k\}$$
 be the previous stochastic language.

Then $LA^* = \{a^{m_1}ba^{m_2}b\dots a^{m_k}ba^* \mid \exists i > 1 \ m_i = m_1\}$ which is not a stochastic language.

Iteration

The family of (rational) stochastic languages is not closed under Kleene star.

Proof.

Let $L \stackrel{\mathrm{def}}{=} \{a^{m_1}b \dots ba^{m_k}b \mid 1 < k \wedge m_1 = m_k\}$ be the previous stochastic language. Assume that $L^* = L_{\bowtie \theta}(\mathcal{A})$ with $\bowtie \in \{>, \geq\}$.

Let $\sum_{i=0}^n c_i X^i$ be the minimal polynomial of \mathbf{P}_a . Since 1 is an eigenvalue of \mathbf{P}_a , one gets $\sum_{i=0}^n c_i = 0$ and there are positive and negative coefficients.

By definition, $\sum_{i=0}^{n} c_i \mathbf{P}_{a^i} = 0$ and so for any word w, $\sum_{i=0}^{n} c_i \mathbf{P}_{a^i w} = 0$. Let c_{i_1}, \ldots, c_{i_k} be the positive coefficients of this polynomial.

Let $w \stackrel{\text{def}}{=} ba^{i_1}b(a^{i_2}b)^2 \dots (a^{i_k}b)^2$. $a^iw \in L^*$ iff $i \in \{i_1, \dots, i_k\}$.

Case $L^* = L_{>\theta}(\mathcal{A})$. Let $0 \le i \le n$, $\pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T > \theta$ iff $i \in \{i_1, \dots, i_k\}$. So: $0 = \sum_{i=0}^n c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T > (\sum_{i=0}^n c_i)\theta = 0$ leading to a contradiction.

Case $L^* = L_{\geq \theta}(\mathcal{A})$. Let $0 \leq i \leq n$, $\pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T \geq \theta$ iff $i \in \{i_1, \dots, i_k\}$. So: $0 = \sum_{i=0}^n c_i \pi_0 \mathbf{P}_{a^i w} \mathbf{1}_F^T > (\sum_{i=0}^n c_i)\theta = 0$ leading to a contradiction.

A stochastic language

$$L_{=\frac{1}{2}}(\mathcal{A}) = \{a^{m_1}b \dots ba^{m_k}bcA^* \mid 1 < k \land m_1 = m_k\}$$

Homomorphism

The family of (rational) stochastic languages is not closed under homomorphism.

Proof.

Let $L \stackrel{\text{def}}{=} \{a^{m_1}b \dots ba^{m_k}bcA^* \mid 1 < k \land m_1 = m_k\}$ be the previous stochastic language.

Define the homomorphism h from A to $A' \stackrel{\mathsf{def}}{=} \{a, b\}$ by:

$$h(a) \stackrel{\mathsf{def}}{=} a \qquad h(b) \stackrel{\mathsf{def}}{=} b \qquad h(c) \stackrel{\mathsf{def}}{=} \varepsilon$$

Then $h(L) = \{a^{m_1}ba^{m_2}b\dots a^{m_k}ba^* \mid \exists i > 1 \ m_i = m_1\}$ which is not a stochastic language.

Plan

Presentation

Properties of Stochastic Languages

Oecidability Results

Two decision problems

Let A and A' be probabilistic automata.

First problem

Are A and A' equivalent?

$$\forall w \in A^* \mathbf{Pr}_{\mathcal{A}}(w) = \mathbf{Pr}_{\mathcal{A}'}(w)$$

Second problem

Is
$$L_{\bowtie \theta}(\mathcal{A})$$
 equal to $L_{\bowtie' \theta'}(\mathcal{A}')$?

For deterministic automata this is the same problem. It can be solved in polynomial time by a product construction which provides a witness of non equivalence of size less than |Q||Q'|.

Linear algebra recalls

Let $\mathbf{v_0} \in \mathbb{R}^n$ and $\mathbf{v_1}, \dots, \mathbf{v_k}$ be linearly independent vectors of \mathbb{R}^n .

How to check whether v_0 is a linear combination of v_1, \dots, v_k ?

• Solve in $O(k^3 + n^2)$

$$\begin{pmatrix} \mathbf{v}_1[1] & \dots & \mathbf{v}_k[1] \\ \dots & \dots & \dots \\ \mathbf{v}_1[n] & \dots & \mathbf{v}_k[n] \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} \mathbf{v}_0[1] \\ \vdots \\ \mathbf{v}_0[n] \end{pmatrix}$$

ullet When $\mathbf{v_1}, \dots, \mathbf{v_k}$ are orthogonal (i.e. for all $a \neq b$, $\mathbf{v}_a \cdot \mathbf{v}_b \stackrel{\text{def}}{=} \sum_{i=1}^n \mathbf{v}_a[i]\mathbf{v}_b[i] = 0$)

$$\stackrel{\text{ef}}{=} \sum_{i=1}^{n} \mathbf{v}_a[i] \mathbf{v}_b[i] = 0)$$

Compute in O(kn) the orthogonal projection

$$\mathbf{w}_0 = \sum_{i=1}^k \frac{\mathbf{v}_0 \cdot \mathbf{v}_i}{\mathbf{v}_i \cdot \mathbf{v}_i} \mathbf{v}_i$$

Check in O(n) whether $\mathbf{v}_0 = \mathbf{w}_0$.

Principles of equivalence checking

Enumeration of words

Looking for a counter-example whose length is increasing starting with word ε .

A stack

Managing a stack of words w in order to find counter-examples aw for all $a \in A$. For efficiency purposes, the stack contains tuples $(\mathbf{P}_w \mathbf{1}_F, \mathbf{P}_w' \mathbf{1}_{F'}, w)$.

An orthogonal family for restricting the enumeration

Gen is a set of independent orthogonal vectors of $\mathbb{R}^{Q \cup Q'}$.

If w is not a counter-example, check if $\mathbf{v} \stackrel{\text{def}}{=} (\mathbf{P}_w \mathbf{1}_F, \mathbf{P}'_w \mathbf{1}_{F'})$ is generated by Gen.

- ightharpoonup producing \mathbf{v}' the orthogonal projection of \mathbf{v} on subspace spanned by Gen;
- ightharpoonup comparing \mathbf{v}' to \mathbf{v} .

If $v' \neq v$ then:

- ▶ w is added to the stack:
- $\mathbf{v} \mathbf{v}'$ is added to Gen.

The algorithm

```
If \pi_0 \cdot \mathbf{1}_F \neq \pi_0' \cdot \mathbf{1}_{F'} then return(false, \varepsilon)
Gen \leftarrow \{(\mathbf{1}_F, \mathbf{1}_{F'})\}; \mathbf{Push}(Stack, (\mathbf{1}_F, \mathbf{1}_{F'}, \varepsilon))
Repeat
     (\mathbf{v}, \mathbf{v}', w) \leftarrow \mathbf{Pop}(Stack)
     For a \in A do
        \mathbf{z} \leftarrow \mathbf{P}_a \mathbf{v}; \ \mathbf{z}' \leftarrow \mathbf{P}'_a \mathbf{v}'
        If \pi_0 \cdot \mathbf{z} \neq \pi_0' \cdot \mathbf{z}' then return(false, aw)
        \mathbf{v} \leftarrow \mathbf{0} : \mathbf{v}' \leftarrow \mathbf{0}
        For (\mathbf{x}, \mathbf{x}') \in Gen do
           \mathbf{y} \leftarrow \mathbf{y} + \frac{\mathbf{z} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} \mathbf{x}
           \mathbf{y}' \leftarrow \mathbf{y}' + \frac{\mathbf{z}' \cdot \mathbf{x}'}{\mathbf{z}'} \mathbf{x}'
        If (\mathbf{z}, \mathbf{z}') \neq (\mathbf{v}, \mathbf{v}') then
            \mathbf{Push}(Stack,(\mathbf{z},\mathbf{z}',aw))
            Gen \leftarrow Gen \cup \{(\mathbf{z} - \mathbf{y}, \mathbf{z}' - \mathbf{y}')\}
Until IsEmpty(Stack)
return(true)
```

Complexity

Time complexity

An item is pushed on the stack iff an item is added to Gen.

There can be no more than |Q| + |Q'| items in Gen.

So there are at most |Q| + |Q'| iterations of the external loop.

The index of the first inner loop ranges over A while the index of the most inner loop ranges over Gen.

The operations inside the most inner loop are done in O(|Q| + |Q'|).

This leads to an overall time complexity of $O((|Q| + |Q'|)^3 |A|)$.

Length of witnesses

In addition, the length of the witness is at most |Q|+|Q'|. (also valid for deterministic automata)

Correctness

Assume that the automata are not equivalent and that the algorithm returns **true**.

Let u be a non examined word such that $\mathbf{Pr}_{\mathcal{A}}(u) \neq \mathbf{Pr}_{\mathcal{A}'}(u)$.

Let $u\stackrel{\mathrm{def}}{=} w'w$ with $w(\neq u)$ the greatest suffix examined by the algorithm.

Among such words u, pick one word such that |w'| is minimal.

Claim. There exists w'' that has been inserted in the stack before w such that $\mathbf{Pr}_{\mathcal{A}}(w'w'') \neq \mathbf{Pr}_{\mathcal{A}'}(w'w'')$.

Let $Gen = \{w_1, \dots, w_k\}$ when examining w, there exist $\lambda_1, \dots, \lambda_k$ such that:

So:
$$\mathbf{P}_w \mathbf{1}_F = \sum_{i=1}^k \lambda_i \mathbf{P}_{w_i} \mathbf{1}_F$$
 and $\mathbf{P}_w' \mathbf{1}_{F'} = \sum_{i=1}^k \lambda_i \mathbf{P}_{w_i}' \mathbf{1}_{F'}$

$$\mathbf{Pr}_{\mathcal{A}}(w'w) \stackrel{\text{def}}{=} \pi_0 \mathbf{P}_{w'} \mathbf{P}_w \mathbf{1}_F = \sum_{i=1}^k \lambda_i \pi_0 \mathbf{P}_{w'} \mathbf{P}_{w_i} \mathbf{1}_F = \sum_{i=1}^k \lambda_i \mathbf{Pr}_{\mathcal{A}}(w'w_i)$$
Similarly: $\mathbf{Pr}_{\mathcal{A}'}(w'w) = \sum_{i=1}^k \lambda_i \mathbf{Pr}_{\mathcal{A}'}(w'w_i)$

So there exists i, with $\mathbf{Pr}_{\mathcal{A}}(w'w_i) \neq \mathbf{Pr}_{\mathcal{A}'}(w'w_i)$.

Let $w' \stackrel{\text{def}}{=} w'''a$. aw_i is examined by the algorithm.

So the word $u' \stackrel{\text{def}}{=} w'w_i$ has a decomposition $u' \stackrel{\text{def}}{=} z'z$ where z the greatest suffix examined by the algorithm has for suffix aw_i . So |z'| < |w'|: a contradiction.

Undecidability of the equality problem

Given $\mathcal A$ a rational stochastic automaton, the question $L_{=\frac{1}{2}}(\mathcal A)=\{\varepsilon\}$? is undecidable.

Proof.

By reduction of the undecidable Post correspondence problem (PCP): Given an alphabet A and two morphisms φ_1, φ_2 from A to $\{0,1\}^+$, does there exist a word $w \in A^+$ such that $\varphi_1(w) = \varphi_2(w)$?

Already undecidable for a restriction where the images of letters lie in $(10 + 11)^+$. Inserting a 1 before each letter of images reduces the former problem to the latter.

A word $w \stackrel{\text{def}}{=} a_1 \dots a_n \in (10+11)^+$ defines a value $val(w) \in [0,1]$ by:

$$val(w) \stackrel{\mathsf{def}}{=} \sum_{i=1}^{n} \frac{a_i}{2^{n+1-i}}$$

Since every word starts with a 1, val(w) = val(w') implies w = w'.

Reduction of PCP

For $w \in A^+$ and $i \in \{1, 2\}$, define $val_i(w) \stackrel{\text{def}}{=} val(\varphi_i(w))$.

Illustration of the reduction

A	a	b	c
φ_1	(1)0(1)1	(1)0(1)0	(1)1
φ_2	(1)0	(1)0	(1)1(1)1(1)1

A	a	b	c
val_1	$\frac{13}{16}$	$\frac{7}{16}$	$\frac{3}{4}$
val_2	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{63}{64}$

Correctness of the reduction

The recurrence equation:

$$\mathbf{1}_{q_{i0}} \mathbf{P}_{wa} \mathbf{1}_{q_{i1}}^T = \mathbf{1}_{q_{i0}} \mathbf{P}_w \mathbf{1}_{q_{i1}}^T (val_i(a) + 2^{-|\varphi_i(a)|}) + (1 - \mathbf{1}_{q_{i0}} \mathbf{P}_w \mathbf{1}_{q_{i1}}^T) val_i(a)$$
$$= val_i(a) + 2^{-|\varphi_i(a)|} \mathbf{1}_{q_{i0}} \mathbf{P}_w \mathbf{1}_{q_{i1}}^T$$

By induction we obtain that for all $w \stackrel{\text{def}}{=} a_1 \dots a_n$:

$$\mathbf{1}_{q_{i0}} \mathbf{P}_{w} \mathbf{1}_{q_{i1}}^{T} = \sum_{i=1}^{n} val_{i}(a_{j}) 2^{-\sum_{j < k \le n} |\varphi_{i}(a_{k})|} = val_{i}(w)$$

So for $w \in A^+$: $\mathbf{Pr}_{\mathcal{A}}(w) = \frac{1}{2}(val_1(w) + 1 - val_2(w))$.

Thus $w \in L_{=\frac{1}{5}}(\mathcal{A})$ iff $val(\varphi_1(w)) = val(\varphi_2(w))$ implying that $\varphi_1(w) = \varphi_2(w)$.