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An introductive example

Planning holidays in a foreign country

1. Choosing which train or plane to use;
2. Renting an house or a room in an hotel,

3. Buying tickets for some exhibitions, etc.

Usually these actions must be planned before the holidays.

Thus one looks for an a priori optimal policy
that maximizes the probability to reach a goal.



Formalisation
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The probability of success of lowcost - internet- seeall is %.



Probabilistic automata

Probabilistic Automata (PA) are a variation of MDP where:

» The set of possible actions is the same in every state.
» There are no rewards.

» There is a subset of final states.

More formally, a PA A = (Q, A, {Ps}aca, mo, F') is defined by:

» (Q, the finite set of states;
» A, the finite alphabet;
» For all a € A, P, a probability transition matrix over S

» 7o, the initial distribution over states and F' C () the final states.



lllustration

1.a+0.5b 0.5a+1b

» A={a,b};

> Q={q,qn}, F={a};

> 7T0[(]0] =1.
An edge from a state to another one is labelled by a vector of transition
probabilities indexed by A. The vector is denoted by a formal sum.
For instance, the transition from ¢g to itself is labelled by 1a + 0.56 means that:

» when a is chosen in state qq,
the probability that the next state is g, P4[qo0, o], is equal to 1.

» when b is chosen in state qq,
the probability that the next state is g9, Py[qo, o], is equal to 0.5.



Policies in PA

. . - def .
Words are policies. When some finite word w = ay ... a, is selected,
we are interested in the probability to be in a final state using w as a policy.

Given A a PA and w & ai...a, € A* a word,
the acceptance probability of w by A is defined by:

Pru(w) <Y molg] Y (H P) [0, 4]

qeQ q'eFr

Notation. Given a word w % ai...an,
the probability matrix P, is defined by P, & [, P,.. In particular P, = Id.

With these notations:
Pra(w) = 7T0Pw1£

where 15 is the indicator vector of subset F'.



lllustration

1 0.5b
1.a+0.5b 0.5a+1b
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0.5a

Observe that for all w, Pr4(w) = Pr(to be in ¢; after following policy of w)
and 1 — Pr4(w) = Pr(to be in ¢o after following policy of w)

» Pra(e) =0, Pra(a) = 1Pra(e) =0

» Pry(ab) = Pra(a) + (1 — Pry(a)) = 3
» Pr(abb) = Pry(ab) + £(1 — Pry(ab)) =
> Pr(abba) = $Pr(abb) = 2

4

More generally, the following recursive equations hold:

Pr (wa) = %Pu(w) and Pr 4 (wbh) — %(1 + Pr(w))

from which one can derive an explicit expression of the acceptance probability:
PI'_A aj . 227 n—1 aL:b

Which word maximizes the acceptance probability?



Stochastic languages

We are interested in “useful” policies.

This directly leads to the introduction of stochastic languages. Let:

» A be a probabilistic automaton;
» 0 €[0,1] be a threshold;
» € {<, <, >, >, =,#} be a comparison operator.

Then Lyqp(A) is defined by:

Loco(A) = {w € A* | Pra(w) = 0}

For expressiveness and decidability issues, one also needs the following definitions.

» A rational PA is a PA with probability distributions over Q%.

» A rational stochastic language is a stochastic language
specified by a rational PA and a rational threshold.



Counting with PA

(a succinct representation with an omitted absorbing rejecting state)
Any word z different from a™b™ with m > 0,n > 0 cannot be accepted.
Let w % b with m > 0,n > 0. w can be accepted by:
> a path qo, ¢, ¢ with probability 5-;
» or by a family of paths go, 45, ¢3, ¢} withO <r,sandr+s=m

with cumulated probability % — 21

; the L 1 1
Summing, one obtains: 5t 5w — 3w

Thus: L_g5(A) = {a™b" | n >0}
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Expressiveness problems

Provide a minimal set of comparison operators and thresholds.

Position the stochastic languages w.r.t. the Chomsky hierarchy.

Study the closure properties of the stochastic languages.



A single threshold is enough

Yar, a1 L-o

oo™

The value o depends on 6 # % in the following way:

> If 6 > 1 then gy ¢ F and ozd:ef2—19 so that for all w € A*,
Pry (w) = 55Pra(w)
Thus w € Lyg1 (A') iff w € Loy(A).
> If 6 < 3 then gy € F and ozd:efﬁ so that for all w € A*,
PI'A/ ('LU) — 1—29+PF_A(’LU)

2(1-0)
Thus w € L1 (A') iff w € Loy(A).



Getting rid of (dis)equality
Given a PA A, we build A’ as follows.

» The set of states ' def Q x Q;

def
> Pll(q1,q2), (4, )] S Palar, ¢t ]Pala2, 64l

> whlar, g2] & molqi]molge] and ' & F x (Q\ F).

Once a word w is selected,
the two components of the DES behave independently and so:

Pra (w) = Prg(w)(1 — Pry(w))

Consequently Pr 4 (w) < 1 with equality iff Pr4(w) = 3. Thus:

1
1

L

L3 (A) = L_y(4)

1
2



Getting rid of “lower (or equal) than”

Given a PA A, we build A’ by complementing the final states. Then:
Pry(w) =1—Pry(w)

And so:

L>p(A') = L<g(A)

Lsg(A') = L<g(A)



The Chomsky hierarchy

enumerable

context
sensitive

recursively

algebraic

regular

Class

Grammar

Device

Regular language

L — aR|ale
with L,REA, a€ X

Finite automaton

Algebraic language

L — Rqi...R, with
LeAand R; e AUX

Stack automaton

Context-sensitive
language

Lle*)Ran
m<mn, (S—e¢)
with L“Rj ceAUY

Non determ.  Turing
machine performing in
linear space

Recursively enumerable
language

Ll...Lm—>R1...Rn
avec L, R; e AUX

Turing machine




Revisiting the Chomsky hierarchy

recursively

enumerable

context

sensitive . .
algebraic rational

stochastic




Non recursively enumerable languages

1 0.5b
1.a+0.5b 0.5a+1b
ROPOon

Define v, def 0 and v def 1.
The acceptance probability of w; ... w, is the binary number 0.v,,,, ... Vy,.

So L+¢(A) is the set of representations of numbers (with finite binary
development) greater than 6.

Thus given 0 < 0 < 0’ <1,
Lo/ (A) S Lso(A)

So there is an uncountable number of stochastic languages
implying that “most” of them are non recursively enumerable.

This result does not hold for rational stochastic languages.



Regular versus stochastic languages

A deterministic automaton is a stochastic automaton with probabilities in {0, 1}.

Thus regular languages are stochastic languages.

The language {a™b™ | n > 0} is a rational stochastic non regular language.



Non stochastic context-free languages (1)

L% {a™ba™b...a"ba* | Fi > 1n; =ni}

is a non stochastic context-free language.

Proof.
L is context-free. Use a non deterministic automaton with a counter.
» With a counter one counts n; the number of a’s until the first occurrence of b.

» Then one guesses an occurrence of b and decrements the counter
by the occurrences of a until the next occurrence of b.

» |If the counter is zero the word is accepted.
Assume that (1) L = Ls¢(A) or (2) L = L>g(A).
Let Y7, ¢; X" be the minimal polynomial of P,.

Since 1 is an eigenvalue of P,, one gets Z?:o c; =0
and there are positive and negative coefficients.

[

By definition, >-"" , ¢;P,i = 0 and so for any word w, > . ¢;P i, = 0.



Non stochastic context-free languages (2)
Proof (continued).
Let Pos ={i|0<i<nAc¢; >0} and NonPos={i|0<i<nAc; <0}
Write Pos as {i1,..., i}

Choose w % baith ... bai*b.

Case L = L-¢(A). Let 0 < i < n, by definition of L,
'/TOPu,iw]-g >0 iff i € {il, . 77;k}
So:
0= Z?:O CﬂTOPaiwlg = ZiEPos CiWOPa’iwlg + ZiENonPos Ciﬂ'OPa"wlg
> (Z’/‘,EP(}s Ci)e + (ZieN(mPos 02)0 = (Z?:O CZ)G =0
leading to a contradiction.

Case L = L>¢(A). Let 0 <14 <n, by definition of L,
0P aiwlE > 0 iff i € {iy,... i}
So: 0= Z?:O Ciﬂ'OPuriwl; = Eiepos ciFUPuriwlg + ZiGNonPos CiWOPariwlg

>(ZiEPos Cl)e + (ZieNonPos Ci)ﬁ = (Z'ZLZO 61)0 =0
leading to a contradiction.



Non context-free stochastic languages (1)

def
L= {a™b"c" | n >0}
is a non context-free rational stochastic language.

Proof.
Using Ogden’s lemma it can be easily proved that L is not context-free.

Observe that L = Ly N Ly with L; & {a"b"ct | n > 0} and
def

Ly = {a™b™c" | n > 0}.
So we prove that:
> fori e {1,2}, Ly = L_1 (A;) for some A;
> the family of languages {L = L_1(A)}.4 is closed under intersection.



Non context-free stochastic languages (2)

Proof (continued).

L_i(A) = {a"b"c" | n >0}

=1
-2




Non context-free stochastic languages (3)

Proof (ended).

Let L_, (A1) and L_; (Az) be two arbitrary languages.

Using the previous construction, let A} and A} be automata such that:
» For any word w, PrA;(w) < i;
> L_1(Ai) = L1 (A)).

One builds A as follows:
» The set of states Q Q’ b

> Pul(ar @), (¢4, &) € (Palar, 6f](Phalaz, a3
> T6(q1, 2] &f m1,0[q1]m2,0[g2]) and F def F| x F3.
By construction, Pra(w) = Pr 4 (w)Pr 4, (w).
So for all word w, Pra(w) < 5 and Pra(w) = 15 iff Pry (w) = Pry, (w) = 1.

Consequently,

(A1) N L_1(As2)

=1
16 -2



Inclusion in context-sensitive languages

The class of rational stochastic languages is strictly included in the class of
context-sensitive languages.
Proof.

Context-sensitive languages are the languages for which membership checking can
be performed by a non deterministic procedure in linear space.

A deterministic procedure in linear space (far from being optimal)
Pre-computation in constant space.

» Compute the l.c.m., say b, of denominators of
6, items of matrices {P,}4c4, and items of vector 7.

: . : def def
> Build the integer matrices P/, < bP, and vector 7}, = brmy.

For word w % a; ... a,,, the problem becomes mo([Ti, Py, )1E s 0bm 12
» Compute 6" in space O(n).
» Compute v & (1T, Pl,)
by initializing v to 7, and then iteratively multiply it by P, .
The vectors are bounded by "1, So this is performed in space O(n).

» The sum and comparison are also done in space O(n).



Operations with regular languages

The family of (rational) stochastic languages is closed
under intersection and union with regular languages.
Proof.
Let Lyp(A1) be a (rational) stochastic language (with 1 € {>,>})
and L_1(A2) be a regular language.

0.57y [q] 0.5

©

A

LM%(A) = Lyw(A1) U L1 (A2) and LN#(A) = Lyw(A1) N L=y (Ag)



A stochastic language

o.5¢ ‘0.5
1l.a 0.5b 0.5a 0.5a 1l.a
1.b 1.2l l1-p

0.5b 1.b

() =]

l.a

L_i(A)={a"™b...ba™*b|1<kAmg =my}

=1
-2

k4+mp—1 k+mq—1
. , 1{/1 1
since Pr4(a™'b...ba™*b) = 51 (3 +1- 3



Concatenation

The family of (rational) stochastic languages is not closed
under concatenation with a regular language.

Proof.

Let L {a™b.. . ba™b| 1< kAmy =my}

be the previous stochastic language.

Then LA* = {a™ba™2b...a™* ba* | Fi > 1 m; = my}
which is not a stochastic language.



Iteration

The family of (rational) stochastic languages is not closed under Kleene star.
Proof.

Let L& {a™b...ba™b |1 < kAmy=my} be the previous stochastic language.
Assume that L* = Ly (A) with e {>,>}.

Let Y7 ,¢; X" be the minimal polynomial of P,.

Since 1 is an eigenvalue of P, one gets Y " j¢; =0

and there are positive and negative coefficients.

By definition, >, ¢;P,i = 0 and so for any word w, > i ¢;P i, = 0.
Let ¢i,,...,ci, be the positive coefficients of this polynomial.

Let w & bai1b(a®2b)? ... (ai*b)2. alw € L* iff i € {i1,...,ix}.

Case L* :nL>9(A). Let g <i <n, ToPaiwlk > 0 iff i € {iy,... i}
So: 0= Zi:o Ci’/TOPaiw]-F > (Zizo 61)9 =0

leading to a contradiction.

Case L* :ang(.A). Let 9“ <1 S;/Ll, WQPaiwlg >0iffi e {il, ce ,ik}.
So: 0= Zi:o Ciﬂ-OPaiwlF > (Zizo C,)a =0

leading to a contradiction.



A stochastic language

la*OSbOSa

T

@ E‘—»Tj

Loy (A) = {a™b...ba"™beA” | 1< kAmy

= my}



Homomorphism

The family of (rational) stochastic languages is not closed
under homomorphism.

Proof.
Let L% {a™b...ba™ bcA* | 1 < k Amy = my}
be the previous stochastic language.

Define the homomorphism h from A to A’ %f {a, b} by:

Then h(L) = {a™ba™2b...a™*ba* | Ji > 1 m; = my}
which is not a stochastic language.
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Two decision problems

Let A and A’ be probabilistic automata.

First problem
Are A and A’ equivalent?

Yw € A" Pra(w) = Pr 4 (w)

Second problem

Is Lyag(A) equal to Lywg (A')?

For deterministic automata this is the same problem.
It can be solved in polynomial time by a product construction
which provides a witness of non equivalence of size less than |Q]|Q’].



Linear algebra recalls

Let vg € R™ and vy,..., vk be linearly independent vectors of R™.

How to check whether v is a linear combination of vq,...,vi?

e Solve in O(k? + n?)

vill] ..o w1\ [ Vo[l
vi[n] ... vg[n] T voln]
e When vy, ..., vk are orthogonal
def 1

(i.e. forall a #b, vo vy = 2221 Valilvpli] = 0)

Compute in O(kn) the orthogonal projection

Vo - V;
Wy = E V;
Vi-V;

i=1

Check in O(n) whether v = wy.



Principles of equivalence checking

Enumeration of words
Looking for a counter-example whose length is increasing starting with word €.

A stack
Managing a stack of words w in order to find counter-examples aw for all a € A.
For efficiency purposes, the stack contains tuples (P, 1p, P/ 15, w).

An orthogonal family for restricting the enumeration
Gen is a set of independent orthogonal vectors of RV’

If w is not a counter-example, check if v &f (Pwlp, Pl 1p) is generated by Gen.
» producing v’ the orthogonal projection of v on subspace spanned by Gen;
» comparing v’ to v.

If v/ # v then:

» w is added to the stack;
» v — Vv’ is added to Gen.



The algorithm

If 7o - 1p # m, - 15 then return(false,¢)
Gen < {(1p,1p/)}; Push(Stack,(1p, 15/, ¢€))
Repeat
(v,v',w) < Pop(Stack)
For a € A do
z <+ P,v; 2 « PV
If 7o - z # 7|, - 2’ then return(false, aw)
y< 0,y +0
For (x,x') € Gen do
yey+2ix
Yy + 55X
If (z,2') # (y,y’) then
Push(Stack, (z,7z', aw))
Gen <+ GenU{(z—-y,z —y')}
Until IsEmpty(Stack)
return(true)




Complexity

Time complexity

An item is pushed on the stack iff an item is added to Gen.
There can be no more than |Q| + |Q’] items in Gen.

So there are at most |Q| + |Q’| iterations of the external loop.

The index of the first inner loop ranges over A
while the index of the most inner loop ranges over Gen.

The operations inside the most inner loop are done in O(|Q] + |Q’]).

This leads to an overall time complexity of O((|Q] + |Q'])?|Al).

Length of witnesses

In addition, the length of the witness is at most |Q] + |Q’].
(also valid for deterministic automata)



Correctness

Assume that the automata are not equivalent and that the algorithm returns true.
Let u be a non examined word such that Pr4(u) # Pr 4 (u).

Let u % w/w with w(7# u) the greatest suffix examined by the algorithm.
Among such words u, pick one word such that |w’| is minimal.

Claim. There exists w' that has been inserted in the stack
before w such that Pr4(w'w”) # Pr 4 (w'w").

Let Gen = {w1,...,wi} when examining w, there exist Ay, ..., Ag such that:
So: Pulp =3 NPy, 1pand Pl 1p =% NP/ 15

Pr(w'w) € 1Py Pule = XX AimoPuwPulr = Y5 MPra(w'w;)
Similarly: Pr g (w'w) = Y5 LiPra (w'w;)

So there exists i, with Pr 4(w'w;) # Pr.a (w'w;).

def . . .
Let w' = w”a. aw; is examined by the algorithm.

def . def .
So the word ' = w’w; has a decomposition u/ = 2’z where z the greatest suffix
examined by the algorithm has for suffix aw;. So |z’| < |w'|: a contradiction.



Undecidability of the equality problem

Given A a rational stochastic automaton,
the question L_1(A) = {€}7 is undecidable.

Proof.

By reduction of the undecidable Post correspondence problem (PCP):
Given an alphabet A and two morphisms ¢1, @2 from A to {0,1}F,
does there exist a word w € AT such that ¢1(w) = @a(w)?

Already undecidable for a restriction where the images of letters lie in (10 + 11)%.
Inserting a 1 before each letter of images reduces the former problem to the latter.

Aword w ™ a;.. . a, € (10 + 11)* defines a value val(w) € [0, 1] by:

def - a;
val(w) = Z RS

Since every word starts with a 1, val(w) = val(w’) implies w = w'.



Reduction of PCP

For w € A' and i € {1,2}, define val;(w) &ef val(p;(w)).

0.5

1 -
Y(l-val,(a)).a ‘ EZE\ (val, +2
) - 2_m1

1 val, (a




lllustration of the reduction

a b c A a b c
()o(1)1 | (1)0(1)0 (1)1 valy % % 633
(1)0 (1)0 W11 valy | 7 | 7 | &
}—ga + 1—761) + %c
Ba+2b+te @‘@ Ta+ib+c

%a—f—%b

| sa+ b+ Be

forprde(ee_ @ Dder e

a+%b

N[



Correctness of the reduction

The recurrence equation:

1o Puall = 14,,Pull (vali(a) + 2719 + (1 -1, P17 Yval;(a)

=wal;(a) + 2*“‘”(“)‘1quwqui1

. . . def
By induction we obtain that for all w = ay...an:

1Qi0Pw1£1 = Zvali(aj)Q_zjchn lpilar)| — 'Uali(w)
j=1

So for w € AT: Pra(w) = 3(valy(w) + 1 — valz(w)).

Thus w € L_1 (A) iff val(p1(w)) = val(pz(w)) implying that o1 (w) = p2(w).
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