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The spinner game revisited
The player has to compose a five-digit number.

The digits are randomly chosen by a spinner during five rounds.

After every round (except the last one),
the player chooses in which position he inserts the current digit.

The goal of the player is to obtain the largest number as possible.

0
1

2

4
3

9
8

7

5
6

36

The presenter participates to the game.

At any time but at most once, the presenter may switch the current digit
with the previous one when their value difference is at most 2.

The goal of the presenter is to obtain the smallest number as possible.
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Introduction to stochastic games

A stochastic game (SG) is a finite transition system

where any state belongs to either player Max or Min.

The dynamic of the system is defined as follows.

The player owning the current state chooses (possibly randomly)
an enabled action.

Then the environment randomly selects the next state.
The distribution depends on the current state and the selected action.

There are several ways to define rewards.
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Syntax of SG

A SG G def
= (S, {As}s∈S, p) is defined by:

S = SMin ] SMax, the finite set of states;

For every state s, As, the finite set of actions enabled in s.

A
def
=
⋃
s∈S As is the whole set of actions.

p, a mapping from {(s, a) | s ∈ S, a ∈ As} to the set of distributions over S.

p(s′|s, a) denotes the probability to go from s to s′ if a is selected.

Histories.

A history h
def
= s0a0 . . . siai . . . is a finite or infinite sequence alternating

states and actions such that when si+1 is defined p(si+1|si, ai) > 0.
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Illustration

A stochastic game is depicted as a labelled graph.

• States of player Max are represented by circles (©).

• States of player Min are represented by squares (�).

• An edge (s, s′) is labelled by
∑
a∈As p(s

′|s, a)a (when non null).

s0 s1 s2 s3 s4

0.8a+ 1b

0.2a
1a+ 0.5b

0.5b



7/57

From SG to DTMC
In order to obtain a stochastic process,

one needs to fix the non deterministic features of the SG.

A strategy of a player P is a mapping from histories ending in a state s ∈ SP

to a distribution over As.

Classes of strategies are defined depending on two criteria.

the information used in the history.

When a strategy only depends on the last state, it is called memoryless;

the way the selection is performed.

When a strategy deterministically selects its actions, it is called pure.

The DTMC Gσ,τ is the behaviour of the SG G
once strategies σ and τ of respectively Max and Min are chosen.

Its states are information used in strategies.

One denotes h the random infinite history and Prσ,τG,s (resp. Eσ,τG,s)

the probability measure (the expectation operator) in Gσ,τ when starting in s.
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Illustration

Pure memoryless strategies.

• Let σ be the strategy of Max that selects b in s2.

• Let τ be the strategy of Min that selects a in s0.

• Then Gσ,τ is depicted below.

s0 s1 s2 s3 s4

0.8a + 1b

0.2a
1a+0.5b

0.5b

s0 s1 s2 s3 s4

0.8

0.2
0.5

0.5
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Rewards for histories
Let h = s0a0s1 . . . be an infinite history

and Inf(h) = {s | ∀i ∃j > i sj = s}, the set of states occurring infinitely often in h.

Discounted SG with rewards r(s, a) in [0, 1] and a discount 0 < λ < 1.

r(h) =
∑
n∈N λ

nr(sn, an)

Mean Payoff SG with rewards r(s, a) in [0, 1].

r(h) = lim infn→∞
1
n

∑
i<n r(si, ai)

Parity SG with integer priorities pri(s).

Let pri(h) = max(pri(s) | s ∈ Inf(h)) then r(h) = 1pri(h) is even

Priority SG with rewards r(s) in [0, 1] and unique integer priorities pri(s).

Let smax = argmax(pri(s) | s ∈ Inf(h)) then r(h) = r(smax)

Observation. Priority SG extend parity SG.
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Problems for SG
• Determinacy problem.

Let s be a state of a SG G.

Define val↓G(s) = supσ infτ E
σ,τ
G,s(r(h)) and val↑G(s) = infτ supσ E

σ,τ
G,s(r(h))

By construction, val↓G(s) ≤ val
↑
G(s).

Does val↓G(s) = val↑G(s)? Yes it is called the value of s in G and denoted valG(s).

• Existence of optimal strategies.

Does there exist σ (resp. τ) such that:

infτ E
σ,τ
G,s(r(h)) = valG(s) (resp. supσ E

σ,τ
G,s(r(h)) = valG(s))? Yes.

• Classes of optimal strategies.

How can σ and τ be chosen? Pure and memoryless.

• Computational problems.

What is the complexity of the associated decision problems?

in NP ∩ coNP for most of the SG.
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A generic method
Let σ∗ be a strategy of Player Max and τ∗ be a strategy of Player Min
that fulfill for all s:

inf
τ
Eσ
∗,τ
G,s (r(h)) = Eσ

∗,τ∗

G,s (r(h)) = sup
σ

Eσ,τ
∗

G,s (r(h))

Then the game is determined and σ∗ and τ∗ are optimal strategies.

Proof.

sup
σ

inf
τ
(Eσ,τG,s(r(h))) ≥ inf

τ
(Eσ

∗,τ
G,s (r(h)))

= Eσ
∗,τ∗

G,s (r(h)) = sup
σ
(Eσ,τ

∗

G,s (r(h)))

≥ inf
τ
sup
σ
(Eσ,τG,s(r(h)))

So G is determined and σ∗ and τ∗ are optimal strategies in G.
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A contracting operator

Let L be the mapping from RS to RS defined by:

L(v)[s]
def
= max

(
r(s, a) + λ

∑
s′∈S

p(s′|s, a)v[s′] | a ∈ As

)
when s ∈ SMax

L(v)[s]
def
= min

(
r(s, a) + λ

∑
s′∈S

p(s′|s, a)v[s′] | a ∈ As

)
when s ∈ SMin

L “selects” the best decision rule for the owner of s

in a game that stops at time 1 including a terminal reward λv.

Properties of L.

L is Lipschitz-continuous with Lipschitz constant equal to λ < 1.

Thus L admits a unique fixed-point denoted v∗λ.
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Pure memoryless strategies

Let σ∗ be a strategy of player Max that selects in s ∈ SMax some as such that:

r(s, as) + λ
∑
s′∈S

p(s′|s, as)v∗λ[s′] = v∗λ[s]

Let τ∗ be a strategy of player Min that selects in s ∈ SMin some as such that:

r(s, as) + λ
∑
s′∈S

p(s′|s, as)v∗λ[s′] = v∗λ[s]
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Pure memoryless determinacy
• Let vn be the infimum of the expected discounted rewards up to time n in Gσ∗,τ
against an arbitrary strategy τ of player Min. Then:

vn[s] ≥ v∗λ[s]− λn

1−λ
Proof by induction on n.

Inductive step: s ∈ SMax.

vn+1[s] = r(s, as) + λ
∑
s′∈S p(s

′|s, as)vn[s′] ≥ r(s, as) + λ
∑
s′∈S p(s

′|s, as)(v∗λ[s
′]− λn

1−λ )

= r(s, as) + λ
∑
s′∈S p(s

′|s, as)v∗λ[s
′]− λn+1

1−λ = v∗λ[s]−
λn+1

1−λ

Inductive step: s ∈ SMin. Let a be any action possibly selected by τ .

vn+1[s] = r(s, a) + λ
∑
s′∈S p(s

′|s, a)vn[s′] ≥ r(s, a) + λ
∑
s′∈S p(s

′|s, a)(v∗λ[s
′]− λn

1−λ )

= r(s, a) + λ
∑
s′∈S p(s

′|s, a)v∗λ[s
′]− λn+1

1−λ ≥ v∗λ[s]−
λn+1

1−λ

• Let wn be the infimum of the expected discounted rewards up to time n in Gσ,τ∗

against an arbitrary strategy σ of player Max.

By a similar reasoning wn[s] ≤ v∗λ[s] +
λn

1−λ .

Thus the game is determined with value v∗λ and σ∗ and τ∗ are optimal.
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From mean payoff to discounted games

Let G be a mean payoff game and Gλ the discounted version with discount λ.

Pick some increasing sequence {λn}n∈N such that limn→∞ λn = 1.

Let σn and τn be pure memoryless optimal strategies for Gλn .

Since there are only finite such strategies,

some strategies σ∗ and τ∗ must occur simultaneously infinitely often.

By considering a subsequence, one assumes that σ∗ and τ∗ are optimal for all Gλn .
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A property of σ∗ and τ ∗

There exists n0 such that for all λ ≥ λn0 , σ∗ and τ∗ are optimal in Gλ.

Proof by contradiction.

Assume there exists some increasing sequence {nk}k∈N and λnk < µk < λnk+1

such that for all k,

there exist s ∈ S and pure memoryless strategies σk and τk fulfilling:

either Eσk,τkGµk ,s
(r(h)) > Eσ

∗,τk
Gµk ,s

(r(h));

or Eσk,τkGµk ,s
(r(h)) < Eσk,τ

∗

Gµk ,s
(r(h)).

For pure memoryless strategies σ and τ , Eσ,τGλ,s(r(h)) is a rational function of λ.

Define:

fs(λ) =
∏

E
σ,τ
Gλ,s

(r(h))6=E
σ′,τ′
Gλ,s

(r(h))

σ,σ′,τ,τ′ pure memoryless

Eσ,τGλ,s(r(h))−Eσ
′,τ ′

Gλ,s (r(h))

Then some fs would have an infinite number of zeroes.
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Pure memoryless determinacy

Let us denote the random history h = s0a0s1 . . .

Consider the MDP Gτ∗ obtained by using strategy τ∗ for player Min.

σ∗ is a Blackwell policy in Gτ∗ . So it is optimal for mean payoff reward:

lim sup
n→∞

1

n

∑
i<n

Eσ,τ
∗

G,s (r(si, ai)) ≤ lim
n→∞

1

n

∑
i<n

Eσ
∗,τ∗

G,s (r(si, ai))

Using a similar reasoning, one gets for all s and τ :

lim inf
n→∞

1

n

∑
i<n

Eσ
∗,τ
G,s (r(si, ai)) ≥ lim

n→∞

1

n

∑
i<n

Eσ
∗,τ∗

G,s (r(si, ai))

So G is determined and σ∗ and τ∗ are optimal strategies in G.
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Scheme of the proof

A state s is absorbing if As = {a} for some a and p(s|s, a) = 1.

Observe that the priority of an absorbing state is irrelevant.

A state s is vanishing if for all s′ and a ∈ As′ , p(s|s′, a) = 0.

A state is relevant if it is neither absorbing nor vanishing.

The proof is done by induction on the number of relevant states.
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The basis case

When there is no relevant state, all strategies are memoryless.

The value of an absorbing state s is r(s).

The value of a vanishing state s belonging to Max (resp. Min) is:

max
a∈As

∑
s′

p(s′|s, a)r(s′) (resp. min
a∈As

∑
s′

p(s′|s, a)r(s′))

and a corresponding pure strategy is some:

arg max
a∈As

∑
s′

p(s′|s, a)r(s′) (resp. arg min
a∈As

∑
s′

p(s′|s, a)r(s′))
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Interlude

Let f be a function from [0, 1] to [0, 1] that fulfills:

f is non decreasing;

f is 1-Lipschitz: |f(x)− f(x′)| ≤ |x− x′|.

The set of fixed points of f is a non empty interval [a, b].

Denoting f∞(x) = limn→∞ f (n)(x):

for all x < a, f∞(x) = a and f(x) > x;

for all a ≤ x ≤ b, f∞(x) = x;

for all b < x, f∞(x) = b and f(x) < x.
1a b

1

a

b
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Building the inductive step

Let G be a stochastic game with s the relevant state with maximal priority.

We consider all rewards for s and denote Gv the game G with r(s) = v.

We define the game G′v as follows.

Add an absorbing state s̃ with reward v.

Redirect all incoming transitions in s to s̃:
p′(s̃|s′, a) = p(s|s′, a) and p′(s|s′, a) = 0.

Since s is vanishing in G′v, it has less relevant states than Gv.

So the induction applies.

One denotes by ft(v), valG′v (t) the value of state t in G′v.

By construction, ft is non decreasing and |ft(v)− ft(v′)| ≤ |v − v′|.
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Illustration

0, 0.2

s0

1, 0.3

s1

2, 0.6

s2

3, 0.4

s3

4, 0.1

s4

0.8a+ 1b

0.2a
1a+ 0.5b

0.5b

0, 0.2

s0

1, 0.3

s1

2, 0.6

s2

3, 0.4

s3
4, 0.1

s4

5, 0.1

s̃4

0.8a+ 1b

0.2a
1a+ 0.5b

0.5b
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Analysis of G ′v (1)

Proposition.

Let σv be a pure memoryless optimal strategy of Max in G′v.
Assume v < fs(v).

Then there exists ε > 0 such that given any strategy τ of Min:

the probability to reach s̃ from s in G′σv,τv is bounded by 1− ε.

Proof.

Otherwise by a family of strategies τn reaching s̃ with probability at least 1− 1
n

Min can ensure that fs(v) ≤ v.

Consequence for Gv.

When v < fs(v), for all strategy τ of Min

the probability to visit infinitely often s in Gσv,τv is null.



28/57

Analysis of G ′v (2)

Proposition.

Let σv be a pure memoryless optimal strategy of Max in G′v.
Assume v ≤ fs(v).

Let Div be the event: h does not reach s̃. Then for all strategy τ of Min:

(when defined) Eσv,τG′v,s
(r(h)|Div) ≥ fs(v)

Proof.

fs(v) ≤ Eσv,τG′v,s
(r(h)) = Prσv,τG′v,s

(Div)Eσv,τG′v,s
(r(h)|Div) + (1−Prσv,τG′v,s

(Div))v

So Eσv,τG′v,s
(r(h)|Div) ≥ fs(v).

Consequence for Gv.

Let Rn be the event: h visits s exactly n times.

If v ≤ fs(v) then for all strategy τ of Min:

(when defined) Eσv,τGv,s(r(h)|Rn) ≥ fs(v).
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A first lower bound

Proposition.

Let σv be a pure memoryless optimal strategy of Max in G′v.

If v ≤ fs(v) then for all strategy τ of Min:

fs(v) ≤ Eσv,τGv,s(r(h)).

Proof. Let R∞ be the event: h visits s infinitely often.

Eσv,τGv,s(r(h)) =
∑
n

Prσv,τGv,s(Rn)E
σv,τ
Gv,s(r(h)|Rn) +Prσv,τGv,s(R∞)v

Recall that Eσv,τGv,s(r(h)|Rn) ≥ fs(v).

Now:

either fs(v) = v and thus Eσv,τs (r(h)) ≥ fs(v);

or fs(v) > v and implying Prσv,τ (R∞) = 0 implying Eσv,τs (r(h)) ≥ fs(v).
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A second lower bound (1)

Proposition.

There exists a pure memoryless strategy σ of Max in Gv such that:

1 σ is optimal in G′f∞s (v);

2 for all τ , Eσ,τGv,s(r(h)) ≥ f
∞
s (v);

3 for all t, for all τ , Eσ,τGv,t(r(h)) ≥ ft(f
∞
s (v)).

Proof.

• Proof of 1,2: Case fs(v) ≤ v.

A pure memoryless optimal strategy σf∞s (v) in G′f∞s (v)

ensures for s a value f∞s (v) in Gf∞s (v) thus also in Gv.

• Proof of 1,2: Case v < fs(v).

A pure memoryless optimal strategy σv in G′v ensures for s a value fs(v) in Gv.

Since for all τ Prσv,τGv,s(R∞) = 0, σv ensures a value fs(v) in Gv′ for any v′.
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A second lower bound (2)
Proof continued.

Let us note a = f∞s (v) the least fixed point of fs.

Observe that v < fs(v) is equivalent to v < a.

There is a finite number of pure memoryless strategies.

Consider a strategy σ such for all ε > 0 there is some a− ε < v < a with σv = σ.

Thus σ ensures for s a value a in all Gv′ .

Since σ is optimal in G′v′ for v′ as close as possible to a, σ is optimal in G′a.

• Proof of 3.

Since σ is optimal in G′f∞s (v), for all τ , ft(f
∞
s (v)) ≤ Eσ,τG′

f∞s (v)
,t(r(h))

Let R be the event h reaches s̃. Then:

Eσ,τG′
f∞s (v)

,t(r(h)) = (1−Prσ,τG′
f∞s (v)

,t(R))E
σ,τ
G′
f∞s (v)

,t(r(h)|R
c) +Prσ,τG′

f∞s (v)
,t(R)f

∞
s (v)

≤ (1−Prσ,τGv,t(R))E
σ,τ
Gv,t(r(h)|R

c) +Prσ,τGv,t(R)E
σ,τ
Gf∞s (v),t

(r(h)|R)

= Eσ,τGv,t(r(h))
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Pure memoryless determinacy

Proposition.

There exists a pure memoryless strategy τ of Min in Gv such that:

τ is optimal in G′f∞s (v);

for all σ, Eσ,τGv,s(r(h)) ≤ f
∞
s (v).

for all t, for all σ, Eσ,τGv,t(r(h)) ≤ ft(f
∞
s (v)).

Proof by a similar reasoning.

Thus pure memoryless determinacy is established

and the value of t in Gv is ft(f
∞
s (v)).
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Mean payoff and discounted games
Consider the following decision problem.

Input. A mean payoff or discounted game G and a value v.

Output. Is valG(s) ≥ v?

This problem is in NP.

Guess a pure memoryless strategy σ of Max.

Build the MDP Gσ.

Minimize (in polynomial time) the objective o.

Answer yes if o ≥ v.

This problem is in coNP.

Guess a pure memoryless strategy τ of Min.

Build the MDP Gτ .

Maximize (in polynomial time) the objective o.

Answer no if o < v.
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Value iteration for discounted game (1)

The algorithm

v← 0

For i from 1 to n do v← L(v) // n is precomputed.

Select σ and τ the optimal policies w.r.t. 1-step horizon and value λv

Denote:

P the transition matrix of Gσ,τ ;

r defined by r[s] = r(s, as) where as is selected by σ or τ .

Then valG [s] = ((Id− λP)−1r)[s].
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Value iteration for discounted game (2)

Analysis of the game

Let σ and τ be some pure memoryless policies and the DTMC Gσ,τ .

Denote P its transition matrix and r as above.

Then Eσ,τG (r(h)) is the unique solution (Id− λP)X = r.

So:

• Compute β the product of the denominators of the probabilities

and rewards occurring in G and λ in polynomial time.

• Rewrite all values (including 1− λa for appropriate a’s) as α
β .

• So β is an upper bound of the |α|’s.

• Omit β without changing the equation system.

• Denote B = |S|!β|S|.

• Then any Eσ,τG (r(h))[s] can be written as c
d for some d ≤ B.
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Value iteration for discounted games (3)
Which value for n?

L the contracting operator fulfills ||valG − Ln(0)|| ≤ λn

1−λ .

Select n such that: λn

1−λ <
1

2B2 .

Let σ and τ be the policies returned by the algorithm. They fulfill:

||valG −Eσ,τG (r(h))|| ≤ 2λn

1−λ <
1
B2 (reasoning as in MDP)

Different values provided by two pairs of strategies differ form at least 1
B2 .

So: valG = Eσ,τG (r(h)).

Analysis

Write λ = p
q . Then log2(

1
λ ) ≥ log2(1 +

1
p ) ≥

1
p and log2(

1
1−λ ) ≤ log2(q).

So n > p(log2(q) + 2 log2(B) + 1) implies λn

1−λ <
1

2B2 .

The value problem of a discounted game is in PTIME with unary λ or with λ = 1
q .
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Looking for large λ (1)

Scheme of the reduction.

Computation of λ∞ such that optimal strategies are Blackwell strategies;

Solving the discounted game;

Deduce the values of the mean payoff game from the optimal strategies

Computation of λ∞ by analysis of the zeroes of Eσ,τGλ,s(r(h))−Eσ
′,τ ′

Gλ,s (r(h)).

• Eσ,τGλ,s(r(h))−Eσ
′,τ ′

Gλ,s (r(h)) = (Id− λP)−1r− (Id− λP′)−1r′

for some P, P′, r, r′ with items occurring in G.

• Let M be the product of denominators occurring in values of G.

and X = 1− λ with X in ]0, 12 ].

• The items of Id− (1−X)P, Id− (1−X)P′, r and r′ can be written as aX + b

with numerators of a and b bounded by M and denominator M .

• Looking for zeroes one may omit the common denominator.
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Looking for large λ (2)

• (Id− (1−X)P)−1r− (Id− (1−X)P′)−1r′ = N
D −

N ′

D′

with N,D,N ′, D′ ∈ Z[X].

• Using Cramer’s rule the coefficients of ND′ −N ′D are bounded by:

R = 2n(n!)4M2n

• Let P ∈ Z[X] whose coefficients are bounded by R.

Then the smallest (if any) root of P in ]0, 12 ] is at least 1
2R .

• Thus an upper bound of λ∞ is 1− 1
2R+1 .

• Since R has a polynomial size w.r.t. the size of G this reduction is polynomial.
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Reduction to reachability games
Let G a game with discount λ.

One builds Gλ with additional states s+ and s− and reachability target s+.

s0

s1 s2

0.8a+ 1b

0.2a
s0

s1 s2

s+

s−

0.8λa+ λb

0.2λa

(1−λ)r(s,a)a
+(1−λ)r(s,b)b

(1−λ)(1−r(s,a))a
+(1−λ)(1−r(s,b))b

Then for all s, σ and τ : Eσ,τG,s(r(h)) = (1− λ)Prσ,τGλ,s(h reaches s+)
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Scheme of the reduction

A two-step reduction

Computing the states s for which valG(s) ∈ {0, 1};

Reduction to a mean-payoff game once these states are computed.

Let us call a game pure if there is no randomness in the game.

Computation of the states s for which valG(s) ∈ {0, 1}

Reduction to a pure parity game; (very difficult)

Reduction from a pure parity game to a pure mean-payoff game.
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From pure parity to mean payoff games

The value of a pure parity game G belongs to {0, 1}.

When pri(s) = x in G, r(s, a) = (−m)x in G′ with m = |S|.

1

v0

0

v1

1

v2

0

v3

2

v4

−5
v0

1

v1

−5
v2

1

v3

25

v4

We claim that the mean payoff game G′ fulfills valG′(s) > 0 iff valG(s) = 1.
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Correctness of the reduction
• Let σ be a pure optimal strategy of Player Max in G

and τ ′ a pure optimal strategy of Player Min in G′.

Gσ,τ ′ is a graph where any vertex has exactly one successor.

From s one reaches a circuit. Let p be the maximal priority occurring in the circuit.

If p is even then the Eσ,τ
′

G′,s(r(h)) ≥ mp − (m− 1)mp−1 > 0.

Thus valG(s) = 1 implies valG′(s) > 0.

• Let τ be a pure optimal strategy of Player Min in G
and σ′ a pure optimal strategy of Player Max in G′.

Gσ′,τ is a graph where any vertex has exactly one successor.

From s one reaches a circuit. Let p be the maximal priority occurring in the circuit.

If p is odd then Eσ
′,τ
G′,s(r(h)) ≤ −mp + (m− 1)mp−1 < 0;

Thus valG(s) = 0 implies valG′(s) < 0.
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From parity to pure parity games

3

0

2

s
s′

s′′

1
4a

3
4a

3 3

0

2

3

3

3

6

5

4

3

a
s

s′

s′′

sa

s̃6a

s̃4a

s̃2a

ŝ6a

ŝ5a

ŝ4a

ŝ3a

⇒
(pmax = 6)

Let pmax be the maximal priority assumed to be even w.l.o.g.

For all s ∈ S with pri(s) = p and a ∈ As:
Add to SMax: s̃qa with q ≥ p− 1 and q even and ŝqa with q ≥ p and q odd;

Add to SMin: sa and ŝqa with q ≥ p and q even.

pri(sa) = pri(s̃qa) = p and pri(ŝqa) = q.

The set of edges is:

(s, sa) and (sa, s̃
q
a);

(s̃qa, ŝ
q
a) and (s̃qa, ŝ

q+1
a ) when defined;

(ŝqa, s
′) when p(s′|s, a) > 0.
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Property of E (1)

Let E′ (resp. O′) the winning set of player Max (resp. Min) in G′.
Let E = E′ ∩ S and O = O′ ∩ S.

For all s ∈ E, valG(s) = 1.

Proof.

• Let σ be a pure memoryless optimal strategy of Max in G′.
We claim that in the MDP Gσ, one never leaves E.

Assume there exists s ∈ E and a ∈ Aσs such that p(s′|s, a) > 0 and s′ ∈ O.

In G′ (after possibly selecting a),

in sa, Min could select s̃pmax
a ;

and in ŝpmax
a Min could select s′ ∈ O, a contradiction.

• Let τ be a pure memoryless optimal strategy of Min in the MDP Gσ.

Consider M the Markov chain Gσ,τ restricted to E.
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Property of E (2)
Proof (continued).

Assume there exists C a terminal s.c.c. of M
whose maximal priority is odd, say 2r + 1 for state s0.

Let τ ′ be (partially) defined as follows. For all s ∈ C ∩ SMin, τ ′(s) = τ(s).

Let C• = {sa | s ∈ C ∩ S a ∈ As is selected by σ or τ}.
For all sa ∈ C•:

τ ′(sa) = s̃2ra ;

if σ(s̃2ra ) = ŝ2ra then τ ′(ŝ2ra ) = s′

with s′ minimizing the distance to s0 in Gσ,τ .

Consider in G′ the set of states S∗ = C ∪ C• ∪ {s̃2ra , σ(s̃2ra ) | sa ∈ C•}.
Observe that for all t ∈ S∗, pri(t) ≤ 2r + 1.

Every state in S∗ has exactly one successor defined by σ or τ ′ still in S∗.

Consider any circuit in the induced graph:

either some state ŝ2r+1
a occurs in the circuit;

or s0 occurs in the circuit.

Thus S∗ ∩ E′ = ∅ which contradicts the definition of M.



51/57

Property of O (1)
For all s ∈ O, valG(s) < 1.

Proof.

Let τ be a pure memoryless optimal strategy of Min in G′ and the MDP Gτ .

Let σ be a pure memoryless optimal strategy of Max in Gτ and the DTMC Gσ,τ .

Let H be the graph over S′, the set of vertices, defined by:

If s ∈ SMax (resp. t ∈ S′Min) then (s, sσ(s)) (resp. (t, τ(t)) is an edge;

for other t, any edge (t, t′) of G′ is an edge.

Let s0 ∈ O belonging to a terminal s.c.c. C of H.

By construction, C ⊆ O′ and the maximal priority in C is odd.

• We prove by induction that for all s reachable from s0 in Gσ,τ , s ∈ C.

Let a ∈ As be selected either by σ or τ .

Then in sa, τ does not select s̃pmax
a . Otherwise ŝpmax

a would belong to C.

Let s̃2`a be selected by τ .

Then ŝ2`+1
a belongs to C and so all s′ with p(s′|s, a) > 0 belongs to C.

Thus in Gσ,τ , s0 belongs to a terminal s.c.c. with all states in O.



52/57

Property of O (2)

Proof (continued).

• We claim that for all s ∈ O, there is a positive probability in Gσ,τ

to reach a state s′ ∈ O such that s′ belongs to a terminal s.c.c. C of H.

We prove it by induction on the length of a path from s along O′

to some s′ ∈ O of a terminal s.c.c. C of H.

Assume the shortest path starts by ssas̃
r
aŝ
`
as
′.

for some a selected either by σ or τ , and some r and some `.

Then p(s′|s, a) > 0.

Thus, for all s ∈ O there is a positive probability in Gσ,τ
to reach a terminal s.c.c. with all states in O.
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Property of O (3)

Proof (continued).

Assume there exists C a terminal s.c.c. of Gσ,τ with all states in O

whose maximal priority is even, say 2r for state s0.

Let σ′ be (partially) defined as follows. For all s ∈ C ∩ SMax, σ′(s) = σ(s).

Let C• = {sa | s ∈ C ∩ S a ∈ As is selected by σ or τ}.
For all sa ∈ C•:

If τ(sa) = s̃2`a with ` ≥ r then σ′(s̃2`a ) = ŝ2`a ;

If τ(sa) = s̃2`a with ` < r then σ′(s̃2`a ) = ŝ2`+1
a and σ′(ŝ2`+1

a ) = s′

with s′ minimizing the distance to s0 in Gσ,τ .

Consider in G′ the set of states S∗ = C ∪ C• ∪ {τ(sa), σ′(τ(sa)) | sa ∈ C•}.
Every state in S∗ has exactly one successor defined by σ′ or τ still in S∗.

Consider the maximal priority of any circuit in the induced graph:

either its is 2` for some ` ≥ r and state ŝ2`a ;

or it is 2r with s0 occuring in the circuit.

Thus S∗ ∩O′ = ∅ which contradicts the definition of C.
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Interlude
Let M be an irreducible Markov chain

with m states and minimum positive transition probability δ.

Then for all s ∈ S,

π∞(s)
def
= lim

n→∞

1

n

∑
i<n

Pr(Xi = s) ≥ 1

m
δm−1

Proof.

Consider s0, a state with maximal Cesaro-limit probability π∞(s0) ≥ 1
m .

In the DTMC, there is a path of length ` ≤ m− 1 from s0 to s.

Thus:

Pr(Xi+` = s) ≥ δ`Pr(Xi = s0) ≥ δm−1Pr(Xi = s0)

Implying:

π∞(s) ≥ π∞(s0)δ
m−1 ≥ 1

m
δm−1
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From parity to mean payoff game

Let G be a parity game with m states and δ minimal positive probability:

Define:
Si = {s | valG = i} for i ∈ {0, 1}

G′ the mean payoff game with same structure as G is defined by:

For all s ∈ S1 and a ∈ As, r(s, a) = 1;

For all s ∈ S0 and a ∈ As, r(s, a) = −1;

For all s /∈ S0 ∪ S1 with p = pri(s) and a ∈ As, r(s, a) = ( −2mδm−1 )
p;

Observation. This reduction is performed in polynomial time.

Then, for all s ∈ S

valG′(s) = 2valG(s)− 1
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Correctness of the reduction (1)
Proof. valG′(s) ≥ 2valG(s)− 1

• Let σ (resp. τ) be a pure optimal strategy of Player Max (resp. Min) in G
and σ′ (resp. τ ′) be a pure optimal strategy of Player Max (resp. Min) in G′.

Observations

• Under strategy σ (resp. τ), the game never leaves S1 (resp. S0).

• (1) valG(s) ≤ 1−Prσ,τ
′

G,s (h reaches S0) since by combining τ and τ ′,

Min ensures a value no more than 1−Prσ,τ
′

G,s (h reaches S0).

• Let C be a terminal s.c.c. of Gσ,τ ′ . Then:

either S1 ∩ C 6= ∅. Since σ never leaves S1,
C ⊆ S1 and thus valG′(t) = 1 for all t ∈ C;

either S0 ∩ C 6= ∅. For all s ∈ C, Prσ,τ
′

G,s (h reaches S0) = 1.
(1) implies valG(s) = 0, thus C ⊆ S0 and valG′(s) = −1;

or C ∩ (S0 ∪ S1) = ∅ with all t ∈ C fulfilling 0 < valG(t) < 1.

Let us denote C0 the union of the terminal s.c.c. included in S0.
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Correctness of the reduction (2)
Proof (continued).

Let C be terminal s.c.c. that fufills C ∩ (S0 ∪ S1) = ∅.

Thus z ∈ C, a vertex with maximal priority, fulfills p
def
= pri(z) is even.

• When p = 0, for all t ∈ C, r(t, a) = 1. So one immediately gets Eσ,τ
′

G′,t (r(h)) = 1.

• When p > 0, the contribution of z to the mean payoff reward is at least:

1

m
δm−1(

2m

δm−1
)p = 2(

2m

δm−1
)p−1

The accumulated contribution of all t ∈ C \ {z} is at least: −( 2m
δm−1 )

p−1.

So for all t ∈ C, Eσ,τ
′

G′,t (r(h)) ≥ ( 2m
δm−1 )

p−1 ≥ 1. Thus:

valG′(s) ≥ −Prσ,τ
′

G,s (h reaches C0) + (1−Prσ,τ
′

G,s (h reaches C0))

= 1− 2Prσ,τ
′

G,s (h reaches C0)

≥ 1− 2Prσ,τ
′

G,s (h reaches S0)
≥ 1− 2(1− valG(s))
= 2valG(s)− 1

One gets valG′(s) ≤ 2valG(s)− 1 by a similar reasoning about Gσ′,τ .
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